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Abstract. This paper is a survey of two kinds of “compressed” proof schemes,

the matrix method and proof nets, as applied to a variety of logics ranging along the

substructural hierarchy from classical all the way down to the nonassociative Lambek

system. A novel treatment of proof nets for the latter is provided. Descriptions of

proof nets and matrices are given in a uniform notation based on sequents, so that

the properties of the schemes for the various logics can be easily compared.

§1. Introduction. This paper provides a survey of two kinds of “com-
pressed” proof schemes, the matrix method and proof nets, as applied to
a variety of logics ranging along the substructural hierarchy [31] from
classical all the way down to the nonassociative Lambek system. There
appears to be a paucity of survey literature that discusses proof nets for
a variety of logics in a uniform notation, and even less which discusses
matrix methods in relation to proof nets. It is the author’s hope that this
paper can provide in one source a host of information and methodology
for proof nets and matrices, which could allow further research extending
and using these techniques to be more easily conducted. There are few
new results presented here, but the available literature provides treat-
ments of various logics which are incommensurate; we hope to rectify this
situation by unifying the presentation to a common framework.
Section 2 provides the necessary background, reviewing Gentzen-type

sequent calculi for a variety of logics. Section 3 introduces the approaches
to “proof compression” which are the main subject of the paper. Section
4 presents the matrix method, which works for both classical and linear
logic, in some detail. As background, we also rehearse Smullyan’s “uni-
fying notation” [35] of signed formulae which is central to the present
paper. Section 5 describes proof nets for a variety of logics, beginning
with the canonical case of multiplicative linear logic [16]. The proof nets
are defined in a two-sided framework that can be directly applied to two-
sided sequents, so that proof nets for the various logics can be readily

0Thanks are owed to Greg Restall for commenting on an early version, and to Kosta
Došen for some important insights.
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compared. From here it is possible to go both up and down the substruc-
tural hierarchy; after also considering proof nets for classical logic, two
versions of the Lambek calculus are treated. It is observed how the Lam-
bek systems, with their increasingly rigid structural requirements on the
layout of the formulae in a sequent, require more strictly geometrical con-
ditions on correct proof nets. The nonassociative Lambek calculus is here
provided with a two-sided proof net system and a geometric correctness
condition for the first time. The last sections of the paper briefly discuss
complexity of proof procedures and the general problem of “identity of
proofs.”

§2. Sequent systems.

2.1. Classical propositional logic. We begin the discussion with
Gentzen’s [15] sequent calculus for classical logic. This deductive sys-
tem permits the proof of special sequent statements of the form Γ ⇒ ∆.
In a typical notation, A,B, . . . stand for proposition occurrences, while
Θ,Γ, . . . stand for sequences of proposition occurrences. A sequent in
classical logic is often interpreted metalogically as a statement that the
(possibly empty) formula sequence ∆, the succedent, follows from the
(possibly empty) formula sequence Γ, the antecedent, in a natural deduc-
tion or axiomatic system of classical logic. To permit this interpretation,
the succedent must be understood as a disjunction of its formulae, while
the antecedent must be understood as a conjunction of its formulae. The
standard (after Gentzen) presentation of the classical sequent calculus
involves sequents, as just described, which may have formulae on either
side of the arrow; such a presentation is known as a two-sided sequent
calculus. Gentzen’s rules of inference for the classical sequent calculus
may be presented as follows:

Definition 1 (Classical sequent calculus [15]).

D ⇒ D (Axiom)

Γ ⇒ Θ, A

¬A,Γ ⇒ Θ
(¬ L)

A,Γ ⇒ Θ

Γ ⇒ Θ,¬A
(¬ R)

Γ ⇒ Θ, A B,∆ ⇒ Λ

A → B,Γ,∆ ⇒ Θ,Λ
(→ L)

A,Γ ⇒ Θ, B

Γ ⇒ Θ, A → B
(→ R)

A,Γ ⇒ Θ

A ∧B,Γ ⇒ Θ

B,Γ ⇒ Θ

A ∧B,Γ ⇒ Θ
(∧ L)

Γ ⇒ Θ, A Γ ⇒ Θ, B

Γ ⇒ Θ, A ∧B
(∧ R)
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A,Γ ⇒ Θ B,Γ ⇒ Θ

A ∨B,Γ ⇒ Θ
(∨ L)

Γ ⇒ Θ, A

Γ ⇒ Θ, A ∨B

Γ ⇒ Θ, B

Γ ⇒ Θ, A ∨B
(∨ R)

The above gives the so-called logical rules which show how the operators
work. Because the left and right sides of a sequent are considered as
sequences, to obtain classical logic one also requires Gentzen’s structural
rules—which are no less logical, in spite of the terms.

Definition 2 (Structural rules for the left side).

Γ ⇒ Θ

Γ, A ⇒ Θ

(Thinning)

Γ, A,A ⇒ Θ

Γ, A ⇒ Θ

(Contraction)

Γ1, B,C,Γ2 ⇒ Θ

Γ1, C,B,Γ2 ⇒ Θ

(Exchange)

There are mirror-image structural rules for the right side of sequents
also, which are omitted for space reasons here. A sequent calculus proof
is then a tree-like figure with initial sequents (possibly axioms) at the
top and a conclusion at the bottom called the endsequent. To prove a
single formula of classical logic, the initial sequents must be axioms, and
the endsequent must have this formula as the succedent with an empty
antecedent. Some variations of the sequent calculus have been defined
in which the antecedent and succedent are sets rather than sequences
of formulae (e.g. [39]); in such a presentation the structural rules are
“compiled in” to the definition of a sequent, and are not explicitly stated
or used.
The only other rule permitted in a sequent calculus is known as “Cut,”

which certifies a kind of transitivity for sequents:

Γ ⇒ Θ,D D,∆ ⇒ Λ

Γ,∆ ⇒ Θ,Λ

Gentzen’s important result was his “Hauptsatz” stating that the Cut rule
can be eliminated with no loss of logical power for the system. The result-
ing Cut-free sequent system then enjoys the subformula property, meaning
that “the formulae occurring in any [Cut-free] proof of a given endsequent
are all subformulae of the endsequent” [39] (using an obvious definition
of subformula). It is plain from inspecting the Cut rule that this cannot
be a property of proofs which use it. Thanks to the subformula property,



4 SEAN A. FULOP

a classical sequent proof search can be “goal-directed,” working upward
from the endsequent whose proof we seek by applying the inference rules
in reverse. Of course, only Cut-free proofs can ever be discovered in this
fashion.
A goal-directed deduction system is often called analytic, highlighting

the idea that one analyzes the goal sequent to construct (or fail to con-
struct) its proof. The opposite of this is then called a synthetic system, in
which one works from the premisses to the proven expression. A natural
deduction system (e.g. [15]) is one example which is usually thought of as
synthetic, since it is not generally used to construct a natural deduction
proof “upwards” from the conclusion. It is worth noting, however, that
natural deductions in the logics considered here can normally enjoy the
subformula property, and so natural deduction can be regarded as closer
to an analytic system than it is sometimes given credit for being. All of
the proof methods discussed in this paper are analytic because our focus is
on “compressed” goal-directed proof schemes, and so the logical systems
to be discussed will be limited to their Cut-free versions. It is some-
what ironic that, as a referee pointed out, cut-free proofs are generally
longer than proofs with cuts, so in one sense the compression of proofs is
more difficult in the mathematically more pleasant realm of goal-directed
theorem proving.
Smullyan [36] developed a classical deductive system called analytic tab-

leaux based upon foundations laid by Beth [4]. It is definitionally equiva-
lent to a Cut-free sequent calculus handling sets of formulae (thus doing
without structural rules), but the inference rules are explicitly turned
upside-down, highlighting the analytic approach by placing the desired
goal expression at the top of the proof (called a tableau).

2.2. Multiplicative linear logic . Linear logic was introduced by
Girard [16], and has since been the object of much study. For our dis-
cussion of compressed proof objects, only selected fragments will be used.
We present a two-sided sequent formulation of the unit-free multiplicative
fragment. It is two-sided in the previously used sense that the derivable
sequents have possibly nonempty antecedent and succedent. This logic is
commonly named MLL−.

Definition 3 (Sequent calculus for MLL− [27]).

D ⇒ D (Axiom)

Γ ⇒ A,∆

Γ, A⊥ ⇒ ∆
(⊥ L)

Γ, A ⇒ ∆

Γ ⇒ A⊥,∆
(⊥ R)

Γ, A,B ⇒ ∆

Γ, A⊗B ⇒ ∆
(⊗ L)
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Γ ⇒ A,∆ Γ′ ⇒ B,∆′

Γ,Γ′ ⇒ A⊗B,∆,∆′
(⊗ R)

Γ, A ⇒ ∆ Γ′, B ⇒ ∆′

Γ,Γ′, A`B ⇒ ∆,∆′
(` L)

Γ ⇒ A,B,∆

Γ ⇒ A`B,∆
(` R)

Γ ⇒ A,∆ Γ′, B ⇒ ∆′

Γ,Γ′, A ⊸ B ⇒ ∆,∆′
(⊸ L)

Γ, A ⇒ B,∆

Γ ⇒ A ⊸ B,∆
(⊸ R)

Linear logic is substructural, which means that some of Gentzen’s struc-
tural rules for classical logic are not allowed. The only one of Gentzen’s
structural rules that is allowed now is Exchange, so the sequents in essence
keep track of formula occurrences, meaning each side of the sequent con-
stitutes effectively a multiset of occurrences. We also have the Cut rule
allowed, but it is eliminable as before, and we focus only on the Cut-free
version. There follows an example proof of a sequent in MLL−:

A ⇒ A B ⇒ B
A`B ⇒ A,B

(` R)
C ⇒ C

A`B,C ⇒ A,B ⊗ C
(⊗ R)

A`B ⇒ C ⊸ A,B ⊗ C
(⊸ R)

A`B, (B ⊗ C)⊥ ⇒ C ⊸ A
(⊥ L)

2.3. Associative Lambek calculus. Now, we discuss other substruc-
tural logics which take away more of the structural rules, both explicit and
implicit. An important motivation for these logics is found in linguistics,
where they serve as fundamental systems within theories of “categorial
grammar” and its extension to “type-logical grammar” [28, 12]. Our first
example is a logic that was first introduced as a “syntactic calculus” oper-
ating on formulae that were interpreted as linguistic parts of speech [23].
In this guise it is known as the (associative) Lambek calculus.

Definition 4 (Lambek sequent calculus, [23]).

D ⇒ D (Axiom)

∆ ⇒ B Γ[A] ⇒ C

Γ[A/B,∆] ⇒ C
(/L)

Γ, B ⇒ A

Γ ⇒ A/B
(/R)

∆ ⇒ B Γ[A] ⇒ C

Γ[∆, B\A] ⇒ C
(\L)

B,Γ ⇒ A

Γ ⇒ B\A
(\R)

Γ[A,B] ⇒ C

Γ[A •B] ⇒ C
(•L)
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Γ ⇒ A ∆ ⇒ B

Γ,∆ ⇒ A •B
(•R)

∆ ⇒ A Γ[A] ⇒ C

Γ[∆] ⇒ C
(Cut)

Lambek calculus (notated simply L, or Lǫ when empty antecedents are
permitted) is a positive logic in which none of Weakening, Contraction,
or Exchange are permitted, so the logical consequence relation involves
sequences of formulae. Thus we introduced the standard notation Γ[·],
which means a formula sequence with a place identified for substitution
which is matched by another use of the similar notation in the same
inference rule. Once again, the logic enjoys Cut elimination so we deal
solely with the Cut-free version. Associativity of the sequences is assumed,
as a kind of implicit structural rule; we show what happens next when
even this is removed.

2.4. Nonassociative Lambek calculus. The last system to be in-
troduced is a version of Lambek calculus from which even the implicit
structural rule of associativity is taken away. This nonassociative Lam-
bek system NL was first described in 1961 [24] where it was motivated
by linguistic applications, and it has since been recognized as fundamen-
tal within the area of type-logical grammars for linguistics [26, 12]. This
system is especially useful for grammatical deductions because, without
associative sequences, the sequent calculus handles binary trees of formu-
lae that can be used to represent the syntactic structures of languages.
The sequent presentation below does without the product operator ‘•’,
because this is logically superfluous in a sequent formulation (as it is even
in the associative system L above). The nonassociativity of the sequents
is here emphasized by replacing the usual comma with the sequent-level
operator ‘⋄’. The sequent system enjoys Cut-elimination and is single-
conclusion, so that all provable sequents have a single succedent formula.

Definition 5 (NL sequent calculus, [24]).

A ⇒ A (Axiom)

∆ ⇒ A Γ[A] ⇒ C

Γ[∆] ⇒ C
(Cut)

∆ ⇒ B Γ[A] ⇒ C

Γ[(A/B ⋄∆)] ⇒ C
(/ L)

∆ ⇒ B Γ[A] ⇒ C

Γ[(∆ ⋄B\A)] ⇒ C
(\ L)

(Γ ⋄B) ⇒ A

Γ ⇒ A/B
(/ R)

(B ⋄ Γ) ⇒ A

Γ ⇒ B\A
(\ R)

§3. Proof compression. A key application of analytic deductive meth-
ods has been automated deduction. A significant problem for the se-
quent/tableau systems in this arena is the inefficiency resulting from a
large search space. Much progress has been made in the development of
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efficient proof search by application of goal-directed logic programming
methods such as resolution (e.g. [13]). The primary focus here will not
be on efficient search for complete proofs, but rather on the question of
how can an analytic proof be compressed, and thereby become a funda-
mentally different sort of object that can be viewed in a new way, and
possibly constructed more efficiently.
It has been explained many times in the literature (e.g. [11]) that, even

restricting attention to Cut-free proofs, the sequent and tableau calculi
may validate numerous proofs of a given sequent. These several proofs
may differ either “trivially” or non-trivially in the order of application
of some of the rules. The propensity for the sequent/tableau systems
to suffer from spurious ambiguity caused by trivial rule permutation has
been explained in detail elsewhere [39], so here we simply note the fact
and consider its ramifications and proposed remedies. In this paper, we
will consider two kinds of “compressed proof objects,” which differ philo-
sophically with respect to the spurious ambiguities just mentioned. The
first of these, the matrix method, constructs a minimal compressed proof
object that is really nothing beyond a provability test. There is a com-
pelling argument that a matrix proof of a sequent is not really a proof
anymore, because not only trivially different, but also nontrivially differ-
ent sequent/tableau proofs are all collapsed. A provable sequent has, by
definition, exactly one matrix demonstrating its validity.
The second kind of compressed proof object to be considered here is

the proof net. Proof nets were originally described for linear logic [16],
and it has been claimed for that system that they compress proofs to
“just the right extent,” in the sense that any two sequent/tableau proofs
which are nontrivially different will have distinct corresponding proof
nets, while any two sequent/tableau proofs which differ only spuriously
(i.e. by “harmless” permutations of the rules) will have the same proof
net corresponding [37]. The philosophy behind proof nets is to always
seek, if not achieve, this correspondence for the logic at hand, because a
proof net is supposed to be something beyond a minimal provability test—
proponents think of it as “the essence of a proof.” There is, however, no
current consensus among logicians as to what precisely should count as a
nontrivial difference between two proofs.

§4. Matrix methods. In classical and intuitionistic logic, the redun-
dancies and other difficulties with standard proof calculi led to the matrix
methods, independently invented by Bibel [5] and Andrews [3], but per-
fected by Wallen [39]. Here we follow Wallen’s exposition, and the unify-
ing notation of Smullyan’s signed formulae will be of utmost importance.

4.1. Unifying notation of signed formulae. It would be redundant
to present the inference rules of Smullyan’s tableau calculus for classical
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logic, since they are essentially the same as those of Gentzen’s sequent
calculus. One important element of Smullyan’s treatment that will be
important for our discussion throughout, however, is his “unifying nota-
tion” which uses signed formulae classified into two basic varieties [35].
A signed formula is just a formula P which is annotated by a sign, or
polarity, which we will show as either P+ or P−. The sign is used to
indicate the “negation environment” of the formula occurrence within a
sequent, so that negative formula occurrences are all those that are within
the scope of an explicit or implicit negation. An “implicit negation” en-
vironment is always (and only) the antecedent of a conditional or of a
sequent. This definition comes from the truth-functional equivalence be-
tween formulae A → B and ¬A ∨ B. Smullyan used signed formulae
to avoid writing sequents directly with the sequent arrow; his rules for
positive formulae exactly mirror the succedent (R) rules in the sequent
calculus, while tableau rules for negative formulae mirror antecedent (L)
rules in the sequent calculus.
Signed formulae are then classified by Smullyan into two fundamental

kinds, which can be determined by inspecting the sequent rules shown
above. The key question is whether the inference rule “branches,” having
two premisses. A branching rule governs a “signed formula of type B,”
which we may call disjunctive, after the canonical example of the rule (∨
L). A rule with only one premiss, on the other hand, governs a “signed
formula of type A,” which we may term conjunctive. The conjunctive
signed formulae in classical logic are these:

(A ∧B)−, (A ∨B)+, (A → B)+, (¬A)+, (¬A)−

The disjunctive formulae are the others:

(A ∨B)−, (A ∧B)+, (A → B)−

4.2. Classical logic matrices. Step one of the matrix method, and
also ultimately of the proof net method, is to decompose the target se-
quent or formula into a tree of its subformulae that keeps track of the
signs.

Definition 6 ([39]). A formula tree for a signed formula Ag, g ∈ {+,−}
is a tree of subformulae of A together with an assignment of a sign to each
position k of the formula tree. Each position k then contains a signed for-
mula occurrence from within A; the formula occurrence apart from its
sign at k is called the label of k. Let lab(k) and sgn(k) denote the label
and sign of position k respectively. For each position k, if lab(k) occurs
positively in Ag, then sgn(k) = g. If lab(k) occurs negatively in Ag, then
sgn(k) is the opposite sign from g.

Definition 7 ([39]). A path through formula Ag is a subset of the po-
sitions of its formula tree, defined inductively:
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1. {k0}, the root position, is a path.
2. If s, α is a path, so is (s − {α}), α1, α2, for conjunctive α having

α1, α2 as immediate subformulae.
3. If s, α is a path, so is (s−{α}), α1, for conjunctive α having α1 as its

sole immediate subformulae (this is the case where α is a negation).
4. If s, β is a path, so is (s − {β}), β1, and so is (s − {β}), β2, for

disjunctive β having β1, β2 as immediate subformulae.

The second through fourth clauses above can be regarded as path reduction
steps. A completely reduced path will consist entirely of (signed) positions
labeled by atoms, and is called an atomic path.

The above formulation can be easily extended from signed formulae to
two-sided sequents of signed formulae. The simplest way is to decompose
each of the antecedent formulae and succedent formulae separately. The
antecedent formulae are negatively signed, while the succedent formulae
are positively signed, and one decomposes the whole set of signed formulae
into a set of formula trees as above, treating the compound tree as a single
graph with “multiple roots.” The above definitions of a path through the
tree and an atomic path can then be applied mutatis mutandis.

Definition 8 (Matrix representation [39]).

1. If signed formula Ag is conjunctive, its matrix representation is a
row matrix having as element(s) the signed component(s) found im-
mediately below in its formula tree.

2. If signed formula Ag is disjunctive, its matrix representation is a
column matrix having as elements the signed components found im-
mediately below in its formula tree.

3. If signed formula Ag is atomic, it is its own matrix representation.

A completed matrix for a signed formula must have every subformula
in every submatrix converted to matrix representation; matrices are to be
nested as needed. The matrix representation extends to signed two-sided
classical sequents by a simple adaptation of the procedure described above
for sequent trees. The matrix of a sequent is then simply a “row matrix”
whose elements are the respective matrices of the constituent formulae.
This fact can be related to the “metalogical” view of a sequent in which
the antecedent formulae are conjoined while the succedent formulae are
disjoined; observe that a conjunction in the antecedent and a disjunction
in the succedent are each formulae of conjunctive type, and so a row
matrix is the correct form for each.
Every atomic path through a signed formula (or sequent) is now rep-

resented by the sequence of signed atoms encountered on a left-right se-
quence of steps through the columns in its completed matrix—submatrices
are to be stepped through as well in this procedure [39]. When a step
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enters a column matrix, only one row is selected (nondeterministically)
for the atomic path, while the other is ignored.
The key idea at the core of the matrix method is that of a spanning set

of connections.

Definition 9. A connection is a pair of atomic positions in some path
through Ag, which have the same label but opposite signs. A given set of
connections is said to span Ag iff every atomic path through Ag contains
a connection from the set.

Theorem 10 ([39]). For signed propositional formula A+, the existence
of a spanning set of connections for it ensures its provability in classical
logic, and vice versa.

The above definition and theorem concerning a spanning set of connec-
tions also extends in a simple fashion mutatis mutandis to signed two-
sided sequents. For clarity, this may be stated as follows:

Corollary 11. For signed sequent Γ− ⇒ ∆+, the existence of a span-
ning set of connections for it ensures its provability in classical sequent
calculus, and vice versa.

An example sequent provable in classical logic is shown in (1); the
corresponding matrix of the sequent is shown in (2).

¬A, B → A ⇒ ¬B(1)
[

[A+]

[

B+

A−

]]

[B−](2)

This matrix presents two atomic paths: (A+, B+, B−) and (A+, A−, B−).
The spanning set of connections is then {〈A+, A−〉, 〈B+, B−〉}, the exis-
tence of which shows the sequent to be provable in classical logic. Any
sequent of classical propositional logic can be tested for provability using
our adaptation of Wallen’s matrix method to two-sided sequents. The
sequent calculus (or tableaux method) can now be regarded as extremely
inefficient methods of checking that every atomic path through the goal
sequent tree contains a connection from a spanning set!

4.3. MLL−. The matrix method for linear logic was presented by
Galmiche [14]. The matrix representation of a sequent is obtained from
the signed sequent tree just as with classical logic. The matrix for the
sequent proven above in subsection 2.2 is shown in (3); a spanning set of
connections for this matrix is given in (4).

[

A−

B−

] [

B+

C+

]

[

C− A+
]

(3)

{〈A+, A−〉, 〈B+, B−〉, 〈C+, C−〉}(4)
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Reflecting the differences between MLL− and classical logic, it is no
longer sufficient that the sequent matrix possesses a spanning set of con-
nections, however. Galmiche stated the additional requirements for the
set S of connections to linearly span a matrix in the following way: 1) All
atomic occurrences in the matrix occur exactly once with each polarity
in S; 2) no pair of connections in S has overlapping elements; 3) S is
a minimal spanning set. It is easy to see that the set of connections in
(4) does linearly span the above matrix for the sequent. Galmiche stated
the theorem that a sequent of MLL− is provable just in case its matrix
possesses a set of connections which linearly spans it. It is notable that,
despite presenting this as a proven fact, Galmiche never really proved it
in his paper. It is nevertheless possible for us to appreciate, at a glance
at least, how the additional conditions defining a linearly spanning set
derive from the characteristic that MLL handles multisets of formulae
(cf. condition 1), effectively keeping track of formula occurrences and not
allowing contractions of repeated formulae (cf. condition 2) or extraneous
formulae (cf. condition 3) into a proof.
Having discussed the matrix method and signed formulae, it will be

much easier to understand proof nets, a subject to which we turn next.

§5. Proof net methods. The sequent and tableau methods yield too
many possible proofs of a given sequent, and have an undesirable amount
of notational redundancy for automated theorem proving applications.
The matrix method described above has certainly eliminated the redun-
dancy, but now there are in a sense too few proofs of a given sequent
for some applications; in fact, each provable sequent has precisely one
matrix. This may be acceptable for theorem proving, but there are theo-
retical reasons to desire a proof representation that captures “the essence
of a proof.” This notion is related to the general problem of the identity
of proofs [10], and the compressed proof objects known as proof nets have
been put forth as solving this problem for MLL, at least [37].

5.1. MLL−. Our discussion of proof nets must begin with MLL−,
since Girard [16] developed linear logic and proof nets at the same time.
The proof nets are in fact a subclass of the decomposition graphs known
as proof structures. Just as the matrix of a sequent is produced from
the decomposition of the signed formulae while distinguishing conjunc-
tive from disjunctive formulae, a proof structure is a special graph that is
drawn from a formula or sequent decomposition, also keeping track of the
polarities and the conjunctive or disjunctive nature of the signed formulae.
The subgraphs which are drawn for each type of formula decomposition
are traditionally called links; to complete the proof structure, pairs of
atoms having opposite polarity are linked together by edges called axiom
links.
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The MLL− link schemata which may be used to decompose formulae in
a proof structure are shown below. It should be mentioned that these link
drawings are to be viewed as representing graphs without further geomet-
ric properties, so that the specific orientation of a link drawing or whether
edges cross is unimportant. A complete proof structure for the provable
MLL sequent already studied above follows the link presentation below.
The resulting graph has two sorts of edges, which serve to distinguish the
conjunctive from the disjunctive binary formula occurrences (negation is
excluded from the conjunctive/disjunctive dichotomy for this purpose).
The binary links shown with solid lines are the disjunctive formulae, tra-
ditionally called times links (typified by the link for the times connective
⊗ in a positive context), while the dotted lines show the conjunctive for-
mulae, traditionally called par links (and typified by the link for the par
` connective in a positive context). Axiom links are shown with curved
lines in the proof structures. Some formal definitions follow.
MLL− links:

[A⊥]±

A∓

[A`B]−

A− B−

[A`B]+

A+ B+

[A⊗B]−

A− B−

[A⊗B]+

A+ B+

[A ⊸ B]−

A+ B−

[A ⊸ B]+

A− B+

A+ A−

Formula(e) on top of each link are called conclusion, and formulae on the
bottom of a link are called premiss. The axiom link is unique in having
no premisses and two conclusions.
MLL− proof structure:

Definition 12 ([27]). A proof structure 〈S,L〉 consists of a set S of
signed formulae and a set L of links over S (from the above possibilities).
A proof structure must also satisfy the conditions:

• Every formula in S is at most once the premiss of a link;
• Every formula in S is exactly once the conclusion of a link.
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[A`B]− [(B ⊗ C)⊥]− ⇒ [C ⊸ A]+

[B ⊗ C]+

A− B−

B+ C+

C− A+

The proof structure exemplified above is two-sided, because it can be
created for a sequent with formulae on both sides of the arrow ⇒. It is
possible to enumerate all possible proof structures for any sequent now by
decomposing all connectives until we reach the atomic formulae, and then
connecting positive to negative atoms using axiom links [27]. The two-
sided means of presenting a proof structure is, however, not common in
literature on linear logic, and has never been fully described in published
literature.1 In the literature, MLL proof structures are almost invariably
one-sided—meaning they can be constructed only for a one-sided sequent
calculus with empty antecedents. Moreover, such structures cannot in-
volve the implication or negation operators overtly as above, because
they furthermore do not keep track of the polarities of formulae. For our
purposes, the usual one-sided proof structures for MLL obscure the fun-
damental relationship with matrix methods and the unifying notation of
signed formulae, so here we stick with the two-sided dialect.
Completing a proof structure for an MLL sequent is an important step

toward demonstrating provability of the sequent, but it is not yet suffi-
cient. A proof structure for a provable sequent is known as a proof net,
and only those structures which satisfy an additional correctness condi-
tion are indeed proof nets. An impressive list of alternative correctness
conditions for MLL proof nets has arisen from years of research on the
topic, beginning with the original “long trip” condition of Girard [16].
This condition is somewhat cumbersome for our purpose here, so we will
first describe a popular correctness condition due to Danos and Regnier
[8].
Take a proof structure as a graph; let us call it P. Now, let σ(P) be

a new graph derived from P by deleting some edges. Specifically, σ acts
to delete one edge nondeterministically from each par link in P, and is
called a DR switching.

1The presentation here is derived from class lecture notes [37].
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Theorem 13 (Danos-Regnier correctness condition). A proof structure
P is a proof net if and only if every DR switching σ(P) of it yields a con-
nected acyclic graph.

The Danos-Regnier switching condition is easy to apply to small proof
structures—the structure presented above is easily seen to satisfy it—but
has exponential complexity because of the need to check the result of
every DR switching of a proof structure for acyclicity and connectedness
[27].
A more efficient condition was first presented in the PhD dissertation

of Danos [7], and involves transforming a candidate proof structure by
graph contractions (v. [17] for a formal definition of graph contraction).
The two Danos contraction rules are presented as follows in [27]:

y

x

.......

.......

2
−→

y

x

1
−→ x

The basic idea is that two ‘par’ edges transform to a single ‘times’ edge just
if they connect the same two vertices (this can only result from previous
contractions), and any two vertices linked by a ‘times’ edge contract to
one vertex.

Theorem 14 (Danos contraction condition). A proof structure is a proof
net if and only if it contracts to a single vertex by successive application
of the Danos contraction rules above.

The figure sequence below shows the successive contraction of the proof
structure presented above; formulae are irrelevant for this condition, and
are replaced by simple vertex labels. The equivalence between the Danos-
Regnier switching condition and the Danos contraction condition was
proven very simply in [37].

a d h

e

b c

f g

i j
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1
−→ 3 times

a d h

c g i j

1
−→

d h

a g i j

1
−→ 3 times

h

i j

1
−→

h

j

...
.
...

...
.
...

2
−→

h

j

1
−→ j

5.2. Intuitionistic MLL. We refer back to the sequent calculus rules
for MLL−; this system is rendered intuitionistic by endowing it with the
single-conclusion property, by which all sequents must have just one succe-
dent formula [27]. The positive fragment of this system with only ⊗ and
⊸ is known in the literature as multiplicative intuitionistic linear logic
(MILL), and it has some thinly disguised early roots.
A kind of decomposition graph for MILL formulae was published by

Kelly and Mac Lane in 1971 [21] in their study of coherence in categories,
and is possibly the first work on a compressed proof object showing as-
pects of the matrix and proof net methods. The Kelly-MacLane graph
of a MILL formula shows its decomposition to signed atoms; if linking
atoms in opposite polarity pairs can be achieved, then one has essentially
a proof structure, but a correctness criterion is still required for such a
structure to be a proof net [27].
To build a proof structure in MILL, one begins as in MLL by decompos-

ing the sequent into subformulae down to the atoms while keeping track
of the polarities and the conjunctive/disjunctive property of the formula
at each stage. The antecedent formulae are first given a negative sign
while the succedent formula is given a positive sign. Beyond this there
are just two operators, and the decomposition proceeds so that [X ⊗Y ]±
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yields X±, Y ±, while [X ⊸ Y ]± yields X∓, Y ±, as above in MLL. Signed
formulae of the form [X ⊗ Y ]−, [X ⊸ Y ]+ are the conjunctive ones as
in MLL, which are assigned a par link. The formal definition of a proof
structure in MILL (without units) is the same as the above for MLL− mu-
tatis mutandis, and either of the above correctness conditions for MLL
proof nets carries over to the case of MILL [27].
Below we show two proof structures for posited sequents of MILL; only

the first one is a correct proof net, in which each DR switching yields a
connected acyclic graph. The second proof structure has a cycle following
removal of the right branch of the par link, demonstrating the posited
sequent to be underivable in MILL. We see that MILL proof nets are
merely a subspecies of MLL nets, however, one reason to discuss this
logic separately here is to highlight the much earlier literature [21] that
first defined proof structures for this system, and was also first to make
use of signed formulae in a linear logic system. MILL is in a sense also the
archetypal logic in this family possessing the single-conclusion property.

X− ⇒ [Y ⊸ (X ⊗ Y )]+

Y − [X ⊗ Y ]+

X+ Y +

X− ⇒ [(Y ⊸ X)⊗ Y ]+

[Y ⊸ X]+ Y +

Y − X+

5.3. Classical logic. Classical (propositional) logic is actually quite
similar to linear logic; all of the differences derive from the presence of
Gentzen’s structural rules of Weakening and Contraction. It is interesting
to see how the definition of a proof net carries over to this case. Proof
nets for classical logic have been developed by Robinson [32] following
the two-sided paradigm given above for linear logic, in which there are
distinct links for decomposing each connective in a positive versus a neg-
ative context. The system therefore derives naturally from Smullyan’s
unifying notation for classical logic, although Robinson did not cite this
prior literature. The conjunctive and disjunctive links for the decomposi-
tion of signed formulae are very similar to the ones needed for MLL, and
are presented below with adjustments to suit our notation here (leaving
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aside the degenerate links which would handle the true and false units,
not used here).
Classical logic links:

[¬A]±

A∓

[A ∨B]−

A− B−

[A ∨B]+

A+ B+

[A ∧B]−

A− B−

[A ∧B]+

A+ B+

[A → B]−

A+ B−

[A → B]+

A− B+

A+ A−

As Robinson showed, more is needed to obtain a kind of proof net that
enjoys the same correctness conditions which govern MLL. Specifically,
Robinson added links corresponding to the structural rules of Contraction
and Weakening; the former are conjunctive while the latter are disjunc-
tive. Once again our presentation changes the link notation somewhat to
make it uniform with the presentation of MLL.
Structural links:

[Cont]±

A±

A± A±

[Weak]±

B±

B± A±

With these additions, a proof structure can be constructed for a classical
sequent, relying on Definition 12 from the MLL case. The correctness
conditions it must meet to be a proof net for a provable sequent are also
carried over from MLL with no changes. An example is now shown.
Classical proof net:

C− [¬A]− [B → A]− ⇒ [¬B]+ D+

A+Weak

A+

B+ A− B− Weak

B−

This classical proof net turns out to have no conjunctive links, so it has
to be a connected acyclic graph as it is shown according to the Danos-
Regnier condition, and indeed it is. Robinson also gave an elegant, simple
explanation connecting this correctness condition to the unifying notation,
to be restated now. If a proof net comes from a proof, the graph must be
simply connected, which forces the switching condition in the following
way. A disjunctive (‘times’) signed subformulaA◦B for any operator ◦ has
“branched” premisses which come from separate subproofs, and so are not
yet connected, so the occurrence of A◦B must be joined to both premisses
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otherwise the proof net would end up disconnected. On the other hand,
a conjunctive (‘par’) signed subformula C ◦D has premisses coming from
the same subproof, so they are already connected. The formula C ◦ D
must then be joined to exactly one premiss or the graph will contain a
cycle. This explanation is also applicable to the linear logic cases. It is
interesting that the only real difference between the MLL− and classical
proof net systems is the addition of the special links for Contraction and
Weakening.

5.4. Associative Lambek calculus. So far we have discussed clas-
sical logic, which in essence handles formulae in sets, and two varieties
of linear logic, which remove the Weakening and Contraction rules, and
thereby keep track of occurrences of formulae. It is useful to note at this
juncture that these logics have both matrix and proof net methods avail-
able for checking provability of sequents, neither of whose correctness con-
ditions refer crucially to the geometrical arrangement of the proof object.
It is apparent that a matrix of a sequent does not have any interesting
geometrical properties; moreover, although a proof net is a kind of graph,
there is nothing very “geometrical” about these proof nets so far. It is
unimportant whether the link lines in a drawing of the graph cross, for
example.
In fact, Lǫ is basically MILL without Exchange. The lack of Exchange

(or “commutativity”) has effectively split the linear implication into a pair
of directionally sensitive implications notated with the slash operators.
Each slash is interpreted as saying that the formula on top of the slash
results when the formula under it is adjacent on that side. The newfound
sensitivity of the logic to the arrangement of formulae in a sequence has a
profound effect on the definition of a compressed proof procedure. Below,
the binary links for proof nets in the Lambek system L are provided, fol-
lowing Roorda [33, 34]; this time, however, the geometry of the drawings
as shown provides important information. The left-right arrangement of
the subformulae in a decomposition link is now critical; one must swap
the order of the subformulae with respect to the parent formula in the
positive links only.2

Links for Lǫ:

[B/A]−

B− A+

[A\B]−

A+ B−

[B/A]+

A− B+

[A\B]+

B+ A−

2One of the very few sources to provide these link drawings for Lambek proof nets
[27] has got this condition backwards, unfortunately.
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[A •B]+

B+ A+

[A •B]−

A− B−

A+ A−

L proof structure It seems that the formal definition of a proof struc-
ture in L can be kept the same as for the systems above. An example is
now shown.

[C • (C\A)/B]− B− ⇒ A+

C− [(C\A)/B]−

[C\A]− B+

C+ A−

This example is in fact also a proof net for the provable sequent. This
proof net satisfies the Danos-Regnier condition plus an additional require-
ment of planarity which was first proven necessary by Roorda [33]; each
DR-switching graph is not only acyclic connected, but also planar as
shown in the drawing.
Although this treatment here applies generally to the system Lǫ allow-

ing empty antecedents, it has been shown [22] that we may exclude all
sequents with empty antecedent by an additional requirement about sub-
nets of a proof net. A subnet is, in our notation, a down-closed subset
of the nodes such that axiom links stay inside the substructure. Then,
to exclude sequents with empty antecedent, it is sufficient to require that
every subnet of a proof net possess at least two conclusions (i.e. local root
formulae at the top).
A different presentation of a noncommutative linear logic was also

shown to require planar proof nets [1], around the same time as Roorda’s
result about the Lambek system. The NCMLL system described in the
reference is equivalent in its multiplicative fragment to another noncom-
mutative logic [30], which in turn is a conservative extension of Lǫ [2].
Thus it is beginning to look as if noncommutativity of the logic (i.e. lack
of Exchange) leads directly to a new geometric requirement of planarity
of the proof net. It is also not at all obvious that a version of the matrix
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method could somehow be formulated for this kind of logic, for now the
specific arrangement of the formulae is critical.

5.5. Nonassociative Lambek calculus. Despite having been dis-
cussed many times in the literature, the system NL has never had a proof
net scheme defined for it in a way that relates clearly with the other proof
net schemes presented here.3 It turns out to be quite easy to adapt the
proof nets for associative L, but an additional correctness condition is
required that has never been developed in literature, and which makes
the resulting nets even more “geometrical.” This is the only novel result
to be introduced in the present survey.
Let us discuss several examples of NL proof structures to develop the

additional correctness condition. Example 1 shows the basic kind of struc-
ture for a provable sequent, which is planar just as in system L. A further
correctness condition is needed in order to account for the effects of the
parentheses, which govern the nonassociative structure of the antecedent.
To develop this extra condition, we draw dotted boundaries from each
pair of parentheses in the antecedent, extending around the first decom-
position link whose active conclusion subformula is governed by that pair.
Such boundaries in our proof nets will be called parenthetical boundaries.
Examining the axiom links in the final structure, observe that only the
link coming from the negative B atom, which connects to the succedent,
crosses the parenthetical boundary that contains it.
Example 1

A−⋄ ([(A\B)/C]−⋄ C−) ⇒ B+

[A\B]− C+

A+ B−

..................... ....................
....

...
...
..
..
..
..
..
..
..
........................................ . . . . . . . . . .

. . .
. .
. .
. .
...
...
...
...
..
..
..
..
..
..
..
..
..
..
..
.

3A proof net system for “classical” NL was provided in [9], but these authors used
a quite different formulation whose definition and correctness condition bears little
obvious resemblance to the proof nets so far discussed.
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Example 2, by contrast, shows a similar proof structure for a non-
provable sequent whose antecedent has the parentheses wrong. The struc-
ture is indeed planar, so the sequent would be provable in system L by
invoking associativity, but observe that now both of the antecedent ax-
iom links cross the first boundary (the outer boundary is not shown). The
problem, in reality, is the C-link, because the link from the positive atom
crosses the parenthetical boundary which contains it. We therefore state
this as part of the correctness conditions.

Theorem 15. An NL-proof structure is a proof net for the decomposed
sequent just in case:

• the Danos-Regnier switching condition, or other equivalent condition,
holds of the structure;

• the structure is planar;
• no axiom link from a positive atom crosses the parenthetical boundary
which contains it.

Example 3 illustrates the structure for a more complicated provable se-
quent, and we observe that two axiom links cross boundaries, but neither
involves a link from a positive atom crossing the boundary which contains
it.
Example 2

(A−⋄ [(A\B)/C]−)⋄ C− ⇒ B+

[A\B]− C+

A+ B−

........................................
....

...
...
..
..
..
..
..
..
..

.

Example 3

(D−⋄ [D\A]−)⋄ ([(A\B)/C]−⋄ C−) ⇒ B+

D+ A−

[A\B]− C+

A+ B−

................ ..................... .
. .
..
..
..
..
..
..
..
. ............................................

....
...
..
..
..
..
..
..
..
..
............................... . . . . . . . ...................................

.....
....

...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
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It is quite easy to see the necessity of this correctness condition, so
a brief explanation should suffice here. Note first that for each slash
operator in a provable NL sequent, there must be a pair of parenthe-
ses surrounding a formula which contains it, and also surrounding the
neighboring occurrence of the subformula under the slash. Every atomic
subformula under a top-level slash (i.e. one not itself within a proper sub-
formula) in the antecedent of the sequent will decompose to a positive
signed atom in the proof net, while the neighboring atom of the same
label will show the opposite sign (cf. Example 1). With the parentheses
in the right place, an axiom link connecting the two atoms will not cross
a boundary determined by them; with parentheses in the wrong places,
the positive atom will be contained within a boundary which does not
contain its counterpart negative (cf. Example 2). This argument extends
by a structural induction to more complicated formulae. In essence, the
device of the boundaries is a way of checking the grouping action of the
parentheses in the proof net.
Example 4 shows that care must be taken to draw the parenthetical

boundaries when subformulae involving “useless types” occur in the se-
quent. Observe that the subformula C/D has types C and D which are
“useless,” in that they do no work in reducing the sequent. When this
is the case, we must draw the boundary all the way around the axiom
links which connect the decompositions of the occurrences of C/D. After
drawing the boundaries appropriately, we observe that once again no ax-
iom link coming from a positive atom crosses a boundary which contains
it. The proof structure for this provable sequent is then a proof net, under
our newly formulated condition.
Example 4

A−⋄ ([(A\B)/(C/D)]−⋄ [C/D]−) ⇒ B+

[A\B]− [C/D]+

C− D+

A+ B−

D− C+

............................ . . . . . . . . . . . . .. . . . .........
......

.....
....
....
....
..
..
..
..
..
...
...

...
...................

................................................
.....

.....
....

...
...
...
...
...
...
...
...
...
..
..
..
..
..
..
..

....
.

We have at last descended all the way down the substructural hierarchy.
As the logics became more stringent in dealing with a specific arrange-
ment of formulae, the conditions on proof nets became accordingly more
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geometrical. Moreover, we noted that for those logics that do not deal
with a specific arrangement of the formulae, it was possible to invoke the
extremely compressed proof format of the matrix method. It is the au-
thor’s hope that this unified discussion has illuminated the ways in which
the “geometry” required of formulae in a logical consequence relation ends
up being encoded into the “geometry of proofs” validating sequents for
the logic. There are probably also some connections that could now be
made with work that has explicitly represented proof nets topologically
as cell complexes (e.g. [25]).

§6. Complexity issues. While complexity of proof methods is not
our focus here it must at least be mentioned, since the improvement in
efficiency offered by compressed proof objects is a major reason for their
promotion and study. The complexity of the decision problem in MLL
has been shown to be NP-complete [20], so no theorem-proving scheme
can ever really be tractable. The best that can be hoped for is minimal
intractability. Proof nets have mostly been studied for the time com-
plexity of the proof verification problem, and along these lines, the Danos
contraction condition as described above has complexity O(n2) in the size
of the proof structure [27]. Guerrini [18], however, showed how to convert
the contraction algorithm into one with linear complexity. Another way
of developing a linear time correctness check was shown by Murawski
and Ong [29]. Given the existence of linear-time algorithms to check
correctness of a proof structure, the origin of the overall NP complexity
is therefore the proof construction due to the sheer number of possible
proof structures to be checked, because how to create axiom links can be
indeterminate after expanding the formula tree.
Turning to the matrix method, the way to check correctness of a matrix

involves traversing all paths through it to see whether there exists a (lin-
early) spanning set of connections for it. Now, while a matrix appears to
be a proof object of a truly minimal size and graphic intricacy, the worst-
case complexity of checking a matrix would seem to be exponential, on
the order of 2n in the length of the formula. This can happen in the case
of a formula that involves nested disjunctive subformulae, which will yield
nested column matrices through which all paths must be traversed. For
this reason, the matrix method was dismissed out of hand by Hughes [19]
as not even a “proof system,” which has occasionally been defined [6] as
a system in which proofs can at least be verified, if not constructed, in
polynomial time. The matrix method does bear the singular feature that
actually constructing the proof object is deterministic and linear-time.
But, to borrow a common adage, if logic were that easy everyone would
be doing it. The matrix method’s powerfully simple proof construction
leaves a large debt to be paid on the other end of the deal, when the
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time comes to check it. So in rough terms, matrices are easy to build
but potentially hard to verify (not unlike the case of truth tables),4 while
the opposite is true for proof nets. In practical applications, of course,
all these considerations are less important than the ultimate competition
among the average-case complexities, and discussing that is beyond our
scope here.

§7. Identity of proofs. The identity of proofs problem remains a sig-
nificant open research question in logic and proof theory [10].5 Simply
put, for any given logical system this is the question of when two ap-
parently different proofs (of the same formula) ought to be regarded as
fundamentally “identical.” While at first glance this issue appears tangen-
tial to the main track of the present paper, it has to be addressed because
it has so often been a central concern in the community researching proof
nets for the system MLL, among others. Proof nets have usually been
promoted as addressing this question directly [16], and have sometimes
been claimed to actually solve the issue [37]. It will now be explained how
such claims should be viewed as exaggerated.
There may in general be more than one proof net for a provable sequent,

however there can often be fewer possible proof nets than possible sequent
proofs, even in a Cut-free system. Each proof net has often been viewed
as representing an equivalence class of sequent proofs modulo “spurious
ambiguity,” while distinct proof nets will sequentialize respectively to full
sequent proofs which are “nontrivially” distinct [37]. In lecture notes (op.
cit.), Straßburger goes so far as to claim a theorem stating that two se-
quent calculus proofs in MLL translate to the same proof net iff they can
be transformed into each other using only “trivial rule permutations.”
Yet, such a theorem seems to be circular, for in order to have this result
one must assert in advance precisely what kinds of sequent rule permu-
tations are held to be trivial and which are nontrivial. But it is this last
issue that remains fundamentally a matter of debate!
Moreover (as Došen pointed out to me), on Straßburger’s analysis, two

sequent proofs which differ only by the presence of a useless Cut rule
must be held to be nontrivially distinct, because the one with Cut will
translate to a proof net involving a Cut link. Yet there is broad agreement
among logicians that a sequent proof involving Cut should be regarded
as “identical” to its Cut-free variant. Proof nets, therefore, should not
be seen to have solved the identity of proofs question for any logical
system. As for the matrix of a sequent, there can be only one, so as a

4Thanks to the referee for pointing out this similarity.
5This section owes a great debt to personal communications with Kosta Došen, and

I herein communicate some of his arguments.
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proof-theoretical object it does not address the fundamental question of
“identity of proofs” other than to trivialize it.

§8. Concluding remarks. Past literature has rarely, if ever, con-
nected all the topics and treatments touched on in the present paper. It is
in the spirit of a new synthesis that the paper is offered, with the hope of
a more complete understanding. We observe many connections between
efforts to compress proof schemata, where the geometrical requirements
of the compressed proof object arise out of the substructural nature of
the logic. We also observe the connection between signed subformulae,
which arise out of the concept of negation and the duality therefrom, and
the “link” or “connection” notions which are central to the compressed
proof objects, whether matrix or proof net.
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Lecture Notes in Computer Science, vol. 88, 9th Symposium, Springer-Verlag, 1980,
pp. 154–167.

[6] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propo-
sitional proof systems, The Journal of Symbolic Logic, vol. 44 (1979), no. 1, pp. 36–
50.
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