
Skeleton in the Euclidean closet

Zalán Gyenis∗

August 21, 2017

Dedicated to the 60th birthday of András Kornai and László Kálmán

Abstract

Euclidean Automata have been introduced in Kornai [Kor14a] to model a phe-

nomenon known as “being in conflicted states”. This brief note gives a further

look on Euclidean Automata and takes the first steps in studying skeleta and

representability and the logical characterization of languages accepted by Eu-

clidean Automata.

Keywords: Euclidean Automata, Skeleta.

1 Introduction

Euclidean Automata (EA) has been introduced, motivated and further studied in

[Kor14a] and [Kor14b]. EA are slight generalizations of the classical finite state

automata: EA can take continuous parameters as input and are used in [Kor14a] to

analyze the situation of being in a conflicted state. Intuitively, being in a conflicted

state is modeled by an EA not as a single state (of the EA) but rather as a set

of “nondeterministic” states that are represented as overlapping parts of the input

parameter space. Let me recall the precise definition of Euclidean Automata.

Definition 1.1 ([Kor14b]). A Euclidean automaton (EA) over a parameter space

Σ is defined as a 4-tuple (Q, I, F, α) where Q ⊆ 2Σ is a finite set of states given as

subsets of Σ; I ⊆ Q is the set of initial states; F ⊆ Q is the set of accepting states;

and α : Σ×Q→ Q is the transition function that assigns for each parameter setting

v ∈ Σ and each state q ∈ Q a next state α(v, q) that satisfies v ∈ α(v, q). �

In [Kor14a] the EA is called deterministic if q ∩ s = ∅ for different q, s ∈ Q

and complete if ∪q∈Qq = Σ. Throughout we will work with complete EA’s only, the

reason is that for v ∈ Σ−∪q∈Qq the condition v ∈ α(v, q) does not make sense, hence

∗Department of Logic, Jagiellonian University and Department of Logic, Eötvös University

Skeleton in the Euclidean closet 2

either one keeps α to be undefined on certain input parameters v or switches to an

equivalent EA with parameter space ∪q∈Qq. For simplicity we assume throughout

that the set of initial states I contains a unique state which we denote by start. If

one permits several initial states he needs to complicate the results accordingly. In

applications drawn in [Kor14a, Kor14b] the alphabet Σ consists of vectors from a

continuous parameter space, typically Rn, however it also makes sense to consider

the definition of an EA when Σ is a finite set, especially if one considers skeleta of

EA’s, as we do in Section 2.

A typical application in [Kor14a] is the heap (Sorites paradox) presented in the

Sainsbury and Williamson [SW95] manner: Consider the line segment [0, 1] colored

so that the left-hand region is red, and there is a very fine, continuous, gradual

change of shades reaching the right-hand side region that is colored yellow. The line

is covered by a tiny window that exposes only a small region. We move the window

very slowly starting from the left-hand side towards right and after each move one

is asked about the color of the segment exposed by the window. But the window is

so small relative to the line segment that in no position can you tell the difference

in color between what you can see at the two sides of the window. It seems that

you must call every region red after every move, and thus you find yourself in the

paradoxical situation calling a yellow region red.

2 Skeleta and representability

Kornai modeled the heap paradox by an EA in a similar manner as we do below

(to make life easier we give a somewhat simplified model, but the differences are

inessential for the sake of the example). Let’s say [0, 1
3] is ‘clearly red’, [2

3 , 1] is

‘clearly yellow’ and [1
3 ,

2
3] is this ‘hard to tell, orange’ range. Our EA will have 2

states: red (R) and yellow (Y) respectively with R = [0, 2
3] and Y = [1

3 , 1]. Note

that the two states overlap exactly in the ‘problematic’ region. Starting from the

red state the machine gets input from the continuous parameter space Σ = [0, 1].

The machine is defined as follows:

α(v,R) =

{
R if v ∈ [0, 2

3]

Y otherwise.
, α(v, Y) =

{
Y if v ∈ [1

3 , 1]

R otherwise.

In figure:

R Yv ∈ [0, 2/3]

v ∈ [2/3, 1]

v ∈ [0, 1/3]

v ∈ [1/3, 1]

In the entire fuzzy orangish region [1
3 ,

2
3] the model shows hysteresis: if it came from

the red side it will output red, if it came from the yellow side it will output yellow.

Skeleton in the Euclidean closet 3

To get a better understanding of how EA works, Kornai hints at skeletonizing EA’s.

The skeleton of an EA is defined in [Kor14b] as follows.

Definition 2.1 ([Kor14b]). The skeleton of an EA is a standard FSA whose alphabet

corresponds to canonical representatives from each Boolean atom of Q. �

In the deterministic case (where all the states of the EA are disjoint) there is

a correspondence between input letters and automaton states. However, in the

nondeterministic case (where states are not necessarily disjoint) we may not be able

to select distinct canonical representatives for each state (or for the Boolean atoms).

In this case skeleta should be understand as a “subjective EA” (cf. [Kor14b]).

The definition seems a bit vague as it is not completely clear how to chose the so

called canonical representatives (or the subjective representatives), moreover, Q may

have no Boolean atoms (cf. Example 2.4 below). A key for the clarification is the

observation that some inputs are totally indistinguishable no matter what state the

machine is in. To obtain a definition for the general case, fix an EA α : Σ×Q→ Q

and for v, w ∈ Σ write

v ∼ w ⇐⇒ (∀q ∈ Q) α(v, q) = α(w, q) (1)

Then ∼ is an equivalence relation on Σ. Moreover it is a congruence of α as for any

input sequences 〈v1, . . . , vn〉 and 〈w1, . . . , wn〉, vi ∼ wi implies

α(v1, . . . , vn, start) = α(vn, α(vn−1(· · · , α(v1, start)))) (2)

= α(vn, α(vn−1(· · · , α(w1, start)))) (3)

= · · · (4)

= α(w1, . . . , wn, start) (5)

After this preparation we can redefine the concept of skeleta as follows.

Definition 2.2. The skeleton of the EA α : Σ × Q → Σ is the standard FSA

ᾱ : Σ/∼ ×Q→ Q defined by the equation

ᾱ(v/∼, q) = α(v, q)

Since ∼ is a congruence, ᾱ is well-defined. �

If we apply Definition 2.2 to the heap example given above we end up in the finite

state machine figured below, which, unsurprisingly, is exactly the FSA sketched

in [Kor14a]. (Here the input letters r, y and o stand for red, yellow and orange,

respectively)

R Y

r

y

r

o

y

o

Skeleton in the Euclidean closet 4

Observe that Σ/∼ is always finite. This is because the original EA has finitely

many states only, hence we can have a finite number of possibilities not to fulfill

α(v, q) = α(w, q) for input letters v, w. This results in a finite number of equivalence

classes of ∼. Unfortunately, ᾱ is no longer an EA as Q 6⊆ 2Σ/∼ . It would be handy

to define the skeleton of an EA as another EA over the finite alphabet Σ/∼ by

letting Q/∼ = {q/∼ : q ∈ Q} where q/∼ = {v/∼ : v ∈ q}. However, the automaton

β : Σ/∼ × Q/∼ → Q/∼ defined in the obvious manner β(v/∼, q/∼) = α(v, q)/∼ is

not always well defined as the next examples show.

Example 2.3. Below we give an example for an EA the skeleton of which can be

represented as an EA. Let the alphabet (parameter space) be Σ = R and the set of

states is Q = {R, [0, 1]}. Let α be the EA figured below defined by the equations

α(x,R) = R, α(x, [0, 1]) =

{
[0, 1] if x ∈ [0, 1]

R otherwise.

R [0, 1]x ∈ R
x /∈ [0, 1]

x ∈ [0, 1]

The equivalence relation ∼ will have two classes: Σ/∼ = {[0, 1],R− [0, 1]} = {a, b}
and the skeleton ᾱ looks like

R [0, 1]a, b
b

a

Since R/∼ = {a, b} and [0, 1]/∼ = {a}, the skeleton is a EA over Q/∼ = {a, b}:

{a, b} {a}a, b
b

a

Example 2.4. A small modification on Example 2.3 prevents the skeleton to be

represented by an EA. Here Σ is as before but Q = {R, [0, 1], [0, 2]}. The EA α is as

figured below on the left-hand side.

R

[0, 1]

[0, 2]x ∈ R

x /∈ [0, 1]

x ∈ [0, 1]

x /∈ [0, 1]

x ∈ [0, 1]

R

[0, 1]

[0, 2]a, b

b

a

b

a

The equivalence relation ∼ has two classes again: Σ/∼ = {[0, 1],R− [0, 1]} = {a, b}
(note that elements of [0, 2]− [0, 1] behave exactly the same way elements of R− [0, 1]

do). Thus the skeleton can be figured as above on the right-hand side. Note, however,

that Q/∼ = {{a, b}, {a}}, hence the ‘EA representation’

Skeleton in the Euclidean closet 5

{a, b}

{a}

{a, b}a, b

b

a

b

a

does not make sense as one cannot use the same state differently.

The previous two examples raise the question of representability. In this paper

we could only give a sufficient condition, the general case definitely would require

non-trivial extra work.

Definition 2.5. The EA α : Σ × Q → Q is said to be localizable if for every state

q ∈ Q there is a parameter v ∈ Σ such that v ∈ q − ∪r∈Q,r 6=qr (that is, v belongs

only to the state q). Localizability means that every state has an eigenparameter, a

parameter which is characteristic of the state. �

In general, a state of a localizable EA can have many different eigenparameters,

thus one rather speaks about the set of eigenparameters associated with a given

state.

Proposition 2.6. Skeleta of localizable EA are isomorphic to EA.

Proof. The idea is that if α is localizable, then ∼ extends to a congruence of the

state space Q. That is, if we let Q/∼ = {q/∼ : q ∈ Q} where q/∼ = {v/∼ : v ∈ q},
then the automaton β : Σ/∼ ×Q/∼ → Q/∼ defined by the equality

β(v/∼, q/∼) = α(v, q)/∼

will be well-defined. As Q/∼ ⊆ 2Σ/∼ , β will be an EA.

By localizability for every state q there is a parameter vq, an eigenparameter

of q. For two distinct states q and r the corresponding eigenparameters cannot be

∼-congruent, because α(vq, q) = q but q does not contain vr, hence α(vr, q) 6= q.

The same argument show that α(vq, s) = q for every state s ∈ Q. Therefore all

eigenparameters associated with a given state are equivalent, and each state can

be identified with that equivalence class, that is, there is a bijection between Q and

Q/∼. It follows that α(v/∼, q/∼) = α(v/∼, q). Finally, ∼ is defined in such a manner

that α(v, q) = α(w, q) whenever v ∼ w. Thus α(v/∼, q) is well-defined, hence β is

well-defined, too. �

Example 2.3 shows an EA which is not localizable (the state [0, 1] does not have

an eigenparameter), still its skeleton can be represented by an EA. This means that

localizability is not necessary for being representable by an EA.

Representation of standard finite state automata can be understood (at least) in

two different ways.

Skeleton in the Euclidean closet 6

Definition 2.7. Let Ω be a finite alphabet and R a set of states. The FSA δ :

Ω×R→ R is representable by an EA if there is EA α over Ω such that α and δ are

isomorphic.

We say that α is representable in the general sense by an EA if there is a pa-

rameter space Σ ⊃ Ω and an EA α over Σ such that α � Ω is isomorphic to δ. �

For an FSA δ : Ω × R → R and a state s ∈ R let us denote by [s]in the set

{v ∈ Ω : (∃p ∈ R)δ(v, p) = s}.

Proposition 2.8. Let δ : Ω× R → R be an FSA with the property that there are

no distinct states s1, s2 ∈ R such that [s1]in = [s2]in. Then δ is representable by an

EA.

Proof. The mapping s 7→ [s]in is an isomorphism. �

Example 2.9. Consider the following FSA over the alphabet {v, w, x}.

s1 s2

v

w

v

x

w

x

The sets of incoming edges [s1]in = {v, x} and [s2]in = {w, x} are different, thus

after replacing si by [si]in we get an isomorphic Euclidean automaton.

Unfortunately, the condition in Proposition 2.8 is not necessary: one can con-

struct an EA that does not satisfy that condition. Here is an easy example. Take

a set S and a partition of S into non-empty sets S1 and S2. Take S to be the

alphabet and put Q = {S, S1, S2} as the set of states. The automaton is defined by

α(v, q) = S for any v ∈ S and q ∈ Q. Then [S1]in = [S2]in = ∅.

Connections with homomorphisms. In automata theory several different types

of homomorphisms between automata are defined such as state-homomorphism,

alphabet-homomorphisms, etc. Since states of Euclidean automata are subsets of

the alphabet, there is a natural way to generalize these concepts: homomorphisms

between Euclidean Automata was defined in [Kor14b] as follows.

Definition 2.10. A homomorphism from EA α : Σ × Q → Q to another EA

β : Ω× S → S is a mapping h : Σ→ Ω such that the following stipulations hold.

• h(startα) = startβ;

• h extends to a mapping h : Q→ S in the natural way;

• h
(
α(v1, . . . , vn, start)

)
= β(h(v1), . . . , h(vn), start).

�

Skeleton in the Euclidean closet 7

By Proposition 2.6 skeleta of localizable EA remain Euclidean: For a localizable

EA α : Σ×Q→ Q the congruence ∼ defined by (1) extends to a congruence of the

state space Q. That is, if we let Q/∼ = {q/∼ : q ∈ Q} where q/∼ = {v/∼ : v ∈ q},
then the automaton β : Σ/∼ ×Q/∼ → Q/∼ defined by the equality

β(v/∼, q/∼) = α(v, q)/∼

is an EA. Let us denote this β by α̃. It is very easy to check (cf. the proof of

Proposition 2.6), that α̃ and the skeleton ᾱ defined in 2.2 are isomorphic. Therefore

we will call α̃ also a skeleton of α.

Now, if α is localizable, then α̃ is a homomorphic image of α. For, write h(v) =

v/∼, where ∼ is the congruence defined by (1). The first two items of Definition 2.10

follows from the proof of Proposition 2.6 and the third item is the very definition of

α̃ as h
(
α(v, q)

)
= α(v, q)/∼ = α̃(v/∼, q/∼).

An important consequence is that localizable EA’s are categorical objects in

the sense that the class of all such automata is closed under the homomorphism

introduced in Definition 2.10, and skeleta form a closed subcategory of the category

of all localizable EA.

3 Languages accepted by EA

In this section we turn to a logical characterization of the languages that can be

accepted by EA. Let δ : Ω × R → R be a standard FSA. The language of α is the

set Lα ⊆ Ω∗ defined as

Lα = {w ∈ Ω∗ : δ(w, start) = final}.

This definition clearly makes sense even if Ω is infinite. Therefore one can define

without any difficulty when a Euclidean automata α : Σ×Q→ Q accepts a language

L ⊆ Σ∗: if and only if L = Lα.

This definition, however, may not be satisfactory enough when Σ is infinite.

The reason is that one might like to say that the skeleton of an EA accepts the

same language as the original EA when restricted to the language of the skeleton.

More precisely one can consider the skeleton acting on a subset of the original

alphabet: pick a representative from each of the equivalence class of the alphabet

of the skeleton. Then the skeleton and the original EA shows the same behavior on

each input string. This motivates the next definition.

Definition 3.1. Suppose α : Σ×Q→ Q is an EA, where Σ is allowed to be infinite.

Let Ω ⊆ Σ be a finite subalphabet and L ⊆ Ω∗ a language. Then α is said to accept

L in the general sense if Lα � Ω∗ = L. �

Proposition 3.2. Each regular language can be accepted in the general sense by

an EA.

Skeleton in the Euclidean closet 8

Proof. Let L be a regular language over Ω and δ : Ω × R → R the FSA that

accepts L. By adding new letters to Ω one can reach that in this expanded language

(denote it by Σ) the FSA satisfies [s]in 6= [s′]in for all states s, s′ ∈ R by defining the

action of the new letters carefully. The resulting FSA is representable by an EA α

applying Proposition 2.8. It is clear that Lα � Ω∗ = L. The proof reveals that more

is true: any language accepted by an FSA over a possibly infinite alphabet can also

be accepted in the general sense by an EA. If Ω is finite then Σ can chosen to be

finite; otherwise they can have the same infinite cardinality. �

It is obvious that every language accepted by an EA is regular (because EA

are special FSA), thus the question of which languages are accepted in the general

sense is settled. The cheat here is that we are allowed to enlarge the alphabet. Is

it true that keeping the same alphabet, for every FSA δ : Σ × R → R there is a

EA α : Σ × Q → Q such that Lδ = Lα? If the alphabet is finite, then the answer

obviously is ‘no’. This is because over a finite alphabet Σ one can define at most

finitely many EA as the set of states Q should be a subset of 2Σ which is still finite.

But what about the infinite case where one can have any finite number of states?

The answer is still ‘no’ but for different reasons: the language that contains words

having odd length (over any alphabet Σ) can be accepted by an FSA but cannot be

accepted by any EA.

Example 3.3. No EA can accept the language containing words having odd length.

Proof. The language L = {w ∈ Σ∗ : |w| is odd } is accepted by the FSA figured

below.

start

∀a ∈ Σ

∀a ∈ Σ

Suppose there is an Euclidean automaton (Q, I, F, α) that accepts L. The first in-

put letter v1 can be any letter from Σ, hence after the first transition α(v1, start) =

q1, the resulting state should q1 should contain v1 by Euclideanity. This means

q1 = Σ. The second letter v2 is also arbitrary, hence after the second transition

α(v2, q1) = q2 we get similarly that q2 = Σ. This means q1 = q2 and in fact continu-

ing the argument one get the conclusion that there can be only one state Q = {Σ}.
But such an EA accepts all strings and not just the ones having odd length. �

It is known that regular languages are exactly the languages that can be defined

in monadic second order logic [Bu60, El61]. Let us recall some of the basic definitions

to make everything clear. Let Σ be an alphabet (possibly infinite) and let w =

Skeleton in the Euclidean closet 9

〈w1, . . . , wn〉 be a word in Σ∗. Such a word can be represented by the relational

structure

w =
(
{1, . . . , n}, <w, (Qw

v)v∈Σ

)
called the word model for w, where <w is the usual ordering on the domain of w

and Qw
v are unary predicates collecting for each letter v ∈ Σ those letter positions

of w which carry v:

Qw
v = {i : wi = v}

The corresponding first-order language FO(Σ) has variables x, y, . . . and built up

the grammar

ϕ ::= Qv(x) | x < y | ¬ϕ | ϕ ∨ ψ | ∃xϕ

The language defined by a formula ϕ is Lϕ = {w ∈ Σ∗ : w |= ϕ}, where the

satisfaction relation |= is defined in the usual way. For example the language where

“every a is immediately followed by a b” can be defined by the formula

∀x
(
Qa(x) → ∃y(y = x+ 1 ∧ Qb(y))

)
where y = x+1 has the usual definition x < y ∧ ¬∃z(x < z∧z < y). A non-example

could be L = {a2n : n ∈ N} which is not expressible by a first order formula [Esp12].

Monadic second order logic MSO(Σ) is an extension of first order logic with

variables X,Y, . . . ranging over sets of elements of models. The corresponding atomic

formulas X(x) are also introduced with the intended meaning “x belongs to X”.

Clearly MSO(Σ) is more expressive than FO(Σ) but not vice-versa as the next

theorem shows:

Theorem 3.4 (Büchi [Bu60], Elgot [El61]). A language (over a finite alphabet) is

recognizable by a finite state automaton if and only if it is MSO(Σ)-definable, and

both conversions, from automata to formulas and vice versa, are effective.

Thus, regular languages are exactly the monadic second order definable lan-

guages. However, examples suggests that languages accepted by Euclidean automata

are first order definable:

Example 3.5. For Σ = {a} we must have Q ⊆ {∅, {a}} and thus there are exactly

two non-isomorphic EA, figured below

{a}start a ∅start {a}a
a

The languages accepted by the automata are L1 = {an : n ≥ 0} and L2 = {an :

n ≥ 1}. Both languages are definable in the language FO(Σ), respectively by the

formulas ∀xQa(x) and ∃xQa(x) ∧ ∀xQa(x).

Skeleton in the Euclidean closet 10

Example 3.6. For Σ = {a, b} the number of variations is larger than before as

Q ⊆ {∅, {a}, {b}, {a, b}} gives more possibilities. We will not draw all the non-

isomorphic EA’s here, but one can check easily that the languages that can be

accepted by EA over Σ are of the form “all sequences of a’s and b′s + if we wish we

can prescribe the first and last letter”. For example such an L can contain all words

starting with an a. In any case a FO(Σ)-characterization can be easily given. (As

we prove next that languages accepted by EA are first order definable, we omit the

details of the rather painstaking checking of this claim).

Indeed, we prove that languages accepted by Euclidean automata are FO-definable.

Proposition 3.7. For every finite alphabet Σ there is a corresponding first order

language FO such that each language accepted by an Euclidean automaton can be

defined by a FO-formula.

Proof. Assume (Q, I, F, α) is a Euclidean automaton over the finite parameter space

Σ. Take the first order language FO(Σ) described above and expand this language

by new unary predicates Ri for i < 2|Σ|. We have to find a first order formula that

expresses in any given word model w that α accepts w. The formula in question

will state the existence of a successful run of the EA. As α has finitely many state,

we can enumerate them by Q = {qi : i < 2|Σ|}. Each state qi of the EA will be

encoded by the predicate Ri. We need to express the followings: (1) in each turn

the machine can be only in one state; (2) the starting state is q0; (3) if we are in

position x and the next position is y, then we applied one of the letters, i.e. for one

of the v ∈ Σ we have Qv(x), and thus the next state should be the one prescribed

by α(v, qi) = qj ; (4) the last position is a final state. Thus α accepts w if and only if

w |=
(∧
i 6=j
∀x¬(Ri(x) ∧Rj(x))

)
(6)

∧ ∀x(first(x)→ R0(x)) (7)

∧ ∀x∀y(x = y + 1 →
∨

α(v,qi)=qj

(Ri(x) ∧Qv(x) ∧Rj(y))) (8)

∧ ∀x(last(x)→
∨

(∃q∈F)α(v,qi)=q

(Ri(x) ∧Qv(x))) (9)

Since the empty word satisfies this sentence, if α does not accept the empty word,

then a corresponding clause such as ∃x(x = x) should be added. first(x) and

last(x) are respectively the formulas ¬∃y(y < x) and ¬∃y(x < y). �

If the alphabet Σ is not finite, then a similar argument shows that languages

accepted by EA can be defined by first order formulas that are allowed to contain

infinite disjunctions having an infinite vocabulary (i.e. we use the logic FO∞ω).

Recall that finiteness is a property that cannot be expressed in first order logic.

Indeed, by the compactness theorem if a formula holds in all finite models, then it

Skeleton in the Euclidean closet 11

should also hold in an infinite model. This can be seen as one of the main reasons

why languages that can be accepted by finite state automata cannot be defined in

first order logic (and one needs monadic second order logic). Even if the alphabet is

fixed, an FSA can have an arbitrary finite number of states and we do not have any

control, in terms of first order logic, over the number of states. As we already seen,

there are only finitely many EA over a finite alphabet. That is, if we fix the alphabet,

then there is a fixed upper bound on the possible number of states, depending only

on the size of the alphabet. This allows us to bypass the problem of non-definability

of finiteness: using first order logic it is easy to define models having size at most n,

for a fixed finite number n. This is the key for Proposition 3.7.

As we already mentioned, there are only finitely many EA over a finite alphabet.

Therefore not every first order definable language can be accepted by an EA (there

are infinitely many first order definable languages). Then what is the logic that is

exactly as expressible as Euclidean automata? As the number of states is limited,

the set of EA do not have any extensive closure property (such as closed under direct

product, unions, etc). This suggests use the vague idea that EA are not logical in

the sense of expressibility. Of course it is not clear how to define ‘logicality’ in a

precise manner.

Acknowledgement

I am grateful to the Reviewer for his/her careful reading of the manuscript and

the helpful suggestions. I wish to acknowledge the Premium Postdoctoral Grant of

the Hungarian Academy of Sciences hosted by the Logic Department of the Loránd

Eötvös University.

References

[Bu60] Büchi, J.R., (1960) Weak second-order arithmetic and finite automata. Z.

Math. Logik Grundl. Math. 6, pp. 66–92.

[El61] Elgot, C.C., (1961) Decision problems of finite automata design and related

arithmetics. Trans. Amer. Math. Soc. 98, pp. 21–52.

[Kor14a] Kornai, András (2014) Euclidean Automata. In: Implementing Selves with

Safe Motivational Systems and Self-Improvement, 2014.03.24–2014.03.26, Los

Angeles, USA.

[Kor14b] Kornai, András (2014) Finite automata with continuous input. In: S. Ben-

sch and R. Freund and F. Otto (eds.) Short Papers from the Sixth Workshop

on Non-Classical Models of Automata and Applications.

Skeleton in the Euclidean closet 12

[SW95] Sainsbury, M., and Williamson, T. (1995) Sorites. In Hale, B., and Wright,

C., eds., Blackwell Companion to the Philosophy of Language. Blackwell.

[Esp12] Esparza, Javier (2012) Automata theory, an algorithmic approach. Lecture

notes, http://www.fi.muni.cz/usr/kretinsky/MSO Javier Esparza.pdf,

Accessed: Aug 21, 2017.

