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ABSTRACT. The epsilon calculus seems to be an appropriate environment for modelling the meaning theory
of definite and indefinite descriptions in a natural language. A philosopher of language may ask that whether
Russell’s meaning theory on descriptions is applicable in this language or not. Or more precisely, in what
circumstances has a sentence (containing an epsilon-expression) a contextual meaning, and what is its
logically equivalent quantified reformulation. The question was answered for first order languages earlier,
but the conditions was full of technical complications and the construction applied difficult semantics. In
this paper, the question is answered in a typed lambda calculus, in an easier way and by a simpler semantics.

1. INTRODUCTION

1.1. Hilbert’s epsilon, descriptions and FOL. The first-order language (FOL) extended by the
Hilbertian variable binding operator ε is possibly a good choice as an environment modelling a couple of
formal linguistic and language philosophical phenomena concerning descriptions.1 The term

(1) (εx)ϕ

where ϕ is a FOL formula and x is a variable, has the following intuitive meaning:

(2) „an F , if there is any F at all”

where predicate F is the intended meaning (or the natural language translation, if one likes it) of the
formula ϕ. The intuition above comes straightforward from the first epsilon (or transfinite) axiom
introduced by David Hilbert, which is the following formula scheme

(∃x)ϕ(x)→ ϕ((εx)ϕ(x))

This intended meaning of the epsilon term shows that (εx)ϕ can be called conditional indefinite descrip-
tion, since “an F ” alone is an indefinite description, but adding the conditional clause “there is any F at
all” it becomes a different linguistic entity with, perhaps, a different meaning. Obviously, I do not have
to mention that the meaning of the phrase “an F ” is itself a problematic one. Therefore, the problem of
the semantic difference between “an F ” and “an F , if there is any F at all” is also a tricky one. In the
paper I am committed to the standpoint that these phrases have the same meaning.

In order to show an application of Hilbert’s symbol let me reconstruct formally and analyse the sen-
tence

(3) The man drinking a martini is interesting-looking.

in FOL extended by ε (this extended language is denoted by FOL+ε).2 Since, FOL+ε does not contain
definite descriptions, the phrase “the man drinking a martini” can be seen as a special case of the use of

Key words and phrases. lambda calculus, epsilon symbol.
1See [Slat07], [Knee, p. 100].
2The original sentence can be found in [Donn].
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epsilon. A possible solution is to add a uniqueness clause to the formula ‘man drinking amartini(x)’ (the
formula in FOL+ε expressing the natural language predicate “. . . is a man and drinks a martini”.)3

(εx)(man drinking amartini(x) & (∀y)(man drinking amartini(y) ≡ (x = y))

Let us denote the term above by

(4) (εDx)man drinking amartini(x)

Then the sentence (3) is formulated as follows

(5) interesting-looking((εDx)(man drinking amartini(x)))

Let me remark again, the claim that the phrase “the man drinking a martini” can be expressed by
(εDx)man drinking amartini(x) is not an obvious one, however a possibly good enough working hy-
pothesis. Without a man holding martini in his hand, the meaning of “the man drinking a martini” is as
vague as the meaning of the phrase “the man drinking a martini, if anybody at all”.

Accepting the hypothesis above, one can formally analyse the act referring to the interesting-looking
person in question, even if he holds a glass of water in his hand. In this case, the reference of the term
(4) is a person – not drinking a martini – who seems to be interesting.

The problem of sentence (5) reminds one of Russell’s Theory of Descriptions (RTD). In Russell’s On
Denoting or in [Whit] it is proposed that descriptions must not to be considered as proper names, but
incomplete parts of quatified sentences.

Thus we must either provide a denotation in cases in which it is at first sight absent, or
we must abandon the view that the denotation is what is concerned in propositions which
contain denoting phrases. [Russ, p. 484]
According to the view I advocate, a denoting phrase is essentially part of a sentence, and
does not, as like most single words, have any significance on its own account. [Russ, p.
488]

According to RTD descriptions, as denoting phases, are not interchangeable by identical ones, since they
are meaningless in separation, but have only contextual meanings. Russell in the On Denoting gives a
FOL reformulation for the sentences of the form (3),4 but in the general case, when the natural language
sentence contains more than one descriptions or a lot of logical operators the FOL reformulation can be
carried out several ways. One must mind the scope of logical operators and descriptions. Hence, in the
general case RTD is rather a FOL reformulation program, in the spirit of the treatment of the simple case
described in [Russ]. At this point, a bit naive question arises.

(6) Is the formal sentence (5) equivalent to a plain, quantified one?

If it is in general, then RTD, or better say its quantificational program, is applicable to FOL+ε, in the
sense that the denoting phrases, containing the sentence, can be considered as incomplete parts of a
quantified reformulation.5 If it is not in general, then for FOL+ε Donnellan’s proposal holds (i.e. some-
times descriptions have referential meaning too).6 The answer seems to be the latter. The term (εx)ϕ is
a referring one (its semantic value is always defined) and its semantic is unproblematic, even if there is
no ϕ, at least the reference of (εx)ϕ is not a ϕ. Nevertheless, be careful, RTD is a proposed strategy for

3See [Slat09] p. 417.
4[Russ].
5The crucial point in the tradition of RTD is not that what the FOL reformulation is, but that is there any such reformulation.

For instance, as Zvolenszky questioned: “Initially, at issue was the meaning of a specific, rather narrow class of expressions,
incomplete definite descriptions: are they devices of reference or of quantification?” [Zvol, p. 1].

6See [Donn].
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the problem ‘how to deal with descriptions’ and not even a (mathematical) thesis. (εx)ϕ, in FOL+ε, is a
proper name (in the sense meant by Russell), hence the question must be rewritten in a weak form. But
what will be this weakened question?

It is well-known that if the truth value of the sentence ψ((εx)ϕ) in any model does not depend on the
semantic value of (εx)ϕ, then there is a FOL reformulation of ψ((εx)ϕ).7 Hence, if ψ((εx)ϕ) is an
epsilon-invariant formula (its semantic value is independent from the value of the containing epsilon-
term) then the term (εx)ϕ can be eliminated from ψ((εx)ϕ), up to logical equivalence. The problem is
that, this plain FOL reformulation is not an explicit or transparent one. The proof of the theorem applies
Craig’s Interpolation Theorem, which is a pure existence theorem not giving the needed explicit formula.
Hence, in the light of the above considerations, the relevant question is the following.

Is there an explicit, transparent, well-explainable FOL reformulation of ψ((εx)ϕ),
provided that ψ((εx)ϕ) is epsilon-invariant (in some model)?

For FOL+ε, the question has been positively answered in [Moln], however under a lot of technical
conditions. When one changes FOL to lambda calculus the picture becomes much more clear. The
point is that, in FOL the substitution ψ[x/(εx)ϕ] is only a meta language operation, but in the lambda
calculus it is encoded into the object language via the application MN , where N is supposed to be an
epsilon-term of the form (εx)P .

1.2. Hilbert’s epsilon and the lambda operator. In Section 2, it will be given a syntax and semantics
for the epsilon symbol in the context of typed lambda calculus (TL). The syntactic notions will be the
well-known ones, but in the definitions different way will be followed, based on the tree-technique in
the spirit of Curry–Howard Isomorphism.8 Since, by the Curry–Howard Correspondence, TL is closely
related to the proof theory of the natural deduction system of the propositional logic, a possibility is re-
alised to define the TL syntax notions in the same style as proofs. The form of the definitions will fit to
this doctrine and a tree-based method will be applied.

In Section 3, it will be seen that in TL the result can be reached much more faster than in FOL. No
need to refer to the so called intensional and substitutional epsilon semantics.9 The strategy will be the
following. The typed lambda language extended by Hilbert’s epsilon (L∀ε

λ ) will be considered as a for-
mal model of the fragment of the natural language containing descriptions. Then, if it is possible, the
epsilon expressions will be eliminated and the sentences containing them will be mapped, in an explicit
way, to the epsilon-free quantified reduct L∀

λ of L∀ε
λ . The plain lambda language reformulation will keep

the logical truth in the model. Giving Montague semantics to the extended language and to the plain
epsilon-free language as models (the (M, f)-s and the M-s below, respectively) the construction will be
unproblematic.

7One can call it Caicedo’s Theorem or the Blass–Gurevich Theorem. Its proof first presented in [Caic], but [Blas] claims
before the theorem (Prop. 3.2.) that the proposition is a folklore and “it is mentioned in [Caic] without a reference”.

8It is not easy to refer to a single book or paper, but the book [Simm] (with the programmatic subtitle ‘Taking the Curry-
Howard Correspondence Seriously’) surely uses the tree technique, that I follow.

9Note that, Ahrendt and Giese introduced several types of epsilon semantics. See [Ahre, Def. 4,5]. In [Moln] the
substitutional semantics was applied. Now, in TL, the extensional semantics (see [Moln, p.821.] or [Monk, Def. 29.23,
p. 481]) will be enough.
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λ-∀-ε extended
language

(M, f)i (M, f)j (M, f)k

meaning

Plain λ-∀ languagenatural language translation embedding

Mi Mj Mk

Chain of fragments. The natural language, the λ-∀-ε expressible fragment and the λ-∀ expressible fragment.

In Section 4, it will pointed out that the result is not less effective than the RTD proposed by Russell.

2. SYNTAX AND SEMANTICS OF TYPED LAMBDA SYSTEM WITH EPSILON

2.1. Syntax. For the building of the syntax a tree-based method was chosen (parsing or construction
trees), which is much more transparent than the old fashioned character sequence technique. Mind that,
here the trees grow upward. Sorry for the inconvenience, if you are a mathematician expert of the lambda
calculus. Usually, upward growing trees are used by linguists in Combinatory Categorial Grammar. And,
what is the main motivation, such trees are used in the natural deduction style proof theory.

The definitions below are basically combinations of the well-known ones from [Troe] Sec. 1. and from
the online lecture notes Sorensen, M. H. B., Urzyczyn, P., Curry–Howard Isomorphism (1998)10.
The so called typeability relation (`) is a pure syntactic relation which joins the expressions of the lambda
calculus to types with respect to a fixed set of typed variables called context. Of course, the relation `
plays a fundamental role in the Curry–Howard Isomorphism, which links the lambda expressions to proof
trees of the natural deduction system of the implicational logic.

Definition 1. The language of types is the tuple LTyp = 〈ι, o, (, ), [, ]〉. The set of its strings Srt(LTyp)
contains the finite sequences of characters from {ι, o, (, ), [, ]}. A construction tree Π of the string
γ ∈ Srt(LTyp) is a finite, labeled, ordered tree such that the labels of Π are from Srt(LTyp) and

(1) the labels of the leaves of Π come from the set {ι, o},
(2) the branch nodes of Π (these are not leaves) and their labels are of the form

[α(β)]

βα

(3) the root of Π is γ.
If there is a tree Π such that Π is a construction tree of α ∈ Srt(LTyp), then α is said to be a type
(expression) in LTyp. The set of all types in LTyp is denoted by Exp(LTyp). (Cf. [Troe, p. 9] Def. 1.2.1,
[Troe, p. 7] Def. 1.1.7.)

Note that the construction tree of a type is unique. The construction tree of the type α is denoted by
Tree(α). The referring to brackets [, ] is avoided when a type α is well-known and its construction tree
can be completely reconstruct without them.
Intuitively, ι is the type of individuals and o is the type of sentences. The compound type o(ι) is, for
example, the grammatical type of the single-variable predicates.

10http://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf.
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Definition 2. A lambda language is a tuple Lλ = 〈V,C, (, ), λ, [, ]〉, where V is an infinite and C is
non-empty set and V is disjoint to C. Srt(Lλ) contains the finite sequences from V ∪ C ∪ {λ, (, ), [, ]}.
A construction tree Π of the M ∈ Srt(Lλ) is a finite, labeled, ordered tree such that the labels of Π are
from Srt(Lλ) and

(1) the labels of the leaves of Π come from the set V ∪ C,
(2) the branch nodes of Π and their labels are of the form

[P (Q)]

QP

[(λx)P ]

P

(3) the root of Π is M .
If there is a tree Π such that Π is a construction tree of M ∈ Srt(Lλ), then M is said to be an expression
in Lλ. The set of all expression in Lλ is denoted by Exp(Lλ).
The elements of V are called the variables of Lλ and V is denoted by Var(Lλ) and the members of C are
the constants of Lλ and C is denoted by Const(Lλ). (Cf. [Troe, p. 9] Def. 1.2.2, [Troe, p. 7] Def. 1.1.7.)

Note that, the construction tree of an expression is unique. The construction tree of the expression M is
denoted by Tree(M). The height of Tree(M) is defined by the well-known manner and is denoted by
|Tree(M)|.
Referring to brackets [, ] is avoided, when an expression M is known and its construction tree can be
completely reconstruct without them.

Definition 3. Let 〈V,C, (, ), λ, [, ]〉 be a lambda language. The tuple Lλ = 〈V,C, (, ), λ, [, ], Z〉 is a typed
lambda language, if Z : C → Exp(LTyp). The function Z is denoted by CnstTp(Lλ).

Definition 4. Let Lλ be a lambda language and let Ξ ⊆ Var(Lλ) be a non-empty finite set. A
function f : Ξ → Exp(LTyp) is called a context, and the set of all contexts are denoted by Cont(Lλ).
(Ξ : Γ) ∈ Cont(Lλ) denotes a function f with domain Ξ and range Γ. If f = (Ξ : Γ) is a context, and
x ∈ Ξ then (x : γ) denotes f(x) = γ.

For a typed lambda language Lλ the sets of variables, expressions, contexts etc. defined and denoted
by the same manner as for a lambda languages.

Definition 5. Let Lλ be a typed lambda language. By induction on the height of the construction tree of
the expressions, relation

(Ξ : Γ) `M : ϕ

will be defined as follows for every context (Ξ : Γ) ∈ Cont(Lλ), expression M ∈ Exp(Lλ) and type ϕ.
` is called typeability relation.

(1) Let |Tree(M)| = 1.
(a) If c ∈ Const(Lλ) and (Ξ : Γ) is a context, then (Ξ : Γ) ` c : ϕ, if ϕ = CnstTp(Lλ)(c).
(b) If x ∈ Var(Lλ) and (Ξ : Γ) is a context, then (Ξ : Γ) ` x : ϕ, if (x : ϕ) ∈ (Ξ : Γ).

(2) Let us suppose that n > 1 and for every (Υ : ∆) context, type ψ and expression N with
|Tree(N)| < n, the relation (Υ : ∆) ` N : ψ is defined. Let (Ξ : Γ) be a context, ϕ a type
and M an expression such that |Tree(M)| = n.
(a) Let M = P (Q). Then (Ξ : Γ) ` M : ϕ, if (Ξ : Γ) ` Q : β and (Ξ : Γ) ` P : α(β) and

ϕ = α.
(b) Let M = (λx)P . Then (Ξ : Γ) ` M : ϕ, if (Υ : ∆) ` P : α, ϕ = α(β) and

(Ξ : Γ) = (Υ : ∆) \ {(x : β)}.11,

For some example, see [Troe, p. 10]
11Cf. Sorensen–Urzyczyn, p. 41, def. 3.1.1., Ibid: footnote 10.
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2.2. Montague semantics.

Definition 6. Let M 6= ∅. By induction on |Tree(ϕ)|, the domain set DM(ϕ) of the type ϕ ∈ LTyp is
defined as follows.

(1) DM(o) = {T,F}, DM(ι) = M
(2) If DM(α) and DM(β) is defined earlier, then

DM(α(β)) = DM (β)DM(α)

where DM (β)DM(α) is the set {f : DM(β)→ DM(α)}.
If M is fixed, then D(ϕ) is written instead.

Definition 7. If M 6= ∅, Lλ is a lambda language and (Ξ : Γ) is a context, then a function
a : Var(Lλ)→ ∪ϕ∈LTyp

DM(ϕ) is an assignation of the variables. The assignation a is an assignation of
the type (Ξ : Γ), if for every x ∈ Ξ, a(x) ∈ DM(α) whenever (x : α) ∈ (Ξ : Γ).

Definition 8. Let Lλ be a typed lambda language, M 6= ∅. The tuple M = 〈M, IpM〉 is a model over the
language Lλ, if IpM : C → ∪ϕ∈LTyp

D(ϕ) such that IpM(c) ∈ D(CnstTp(Lλ)(c)).

Definition 9. Let Lλ be a typed lambda language, M = 〈M, IpM〉 a model over the language Lλ, (Ξ : Γ)
a context and a an assignation of the type (Ξ : Γ). Suppose, for N ∈ Exp(Lλ) there is a type ϕ such that
(Ξ : Γ) ` N : ϕ. By induction on |Tree(N)| the semantic value [[N ]]Ma in context (Ξ : Γ) is defined as
follows.

(1) If N = c ∈ Const(Lλ), then

[[c]]Ma = IpM(c).

(2) If N = x ∈ Var(Lλ), then

[[x]]Ma = a(x).

(3) Let N = P (Q), then

[[P (Q)]]Ma = [[P ]]Ma ([[Q]]Ma ).

(4) Let N = (λx)P and
let the assignation a[x→ ξ] be the following

a[x→ ξ](y) = a(y) for every variable y 6= x, and a(x) = ξ.

Then

[[(λx)P ]]Ma : D(α)→ D(β) ; ξ 7→ [[P ]]Ma[x→ξ]

where (Ξ : Γ) ` x : α and (Ξ : Γ) ` P : β.

Note that, if N is not typeable in a context (Ξ : Γ), i.e. there is no type ϕ such that

(Ξ : Γ) ` N : ϕ

then N has no semantic value in an assignation of the type of the context. For example, let the type of
the constant c be o(ι) and the context (Ξ : Γ) = {(x : o)}. Then the expression c(x) is not typeable from
the context {(x : o)}, since the argument of c must be an expression of the type ι. However, c(x) is a
well-defined expression, it has no semantic value in the context {(x : o)}.
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2.3. Logical and epsilon extensions. The logical operators will be defined as constants of certain types.
If Lλ is a typed lambda language, then it could be extended by the following constants.

(1) ¬ : o(o) IpM(¬) : T 7→ F,F 7→ T in a model M,
(2) ∨ : o(o(o)) IpM(∨) : (F,F) 7→ F, and T otherwise in a model M,
(3) ∀ : o(o(ι)) IpM(∀) : {T,F}M → {T,F}, (M → {T,F}; ξ 7→ T) 7→ T, and F otherwise in

a model M,
(4) ε : ι(o(ι)) IpM(ε) : {T,F}M →M : f 7→ g({ξ ∈M | f(ξ) = T}),

where g is a fixed choice function P(M) → M such that g(S) ∈ S, if S 6= ∅ and g(S) ∈ M , if
S = ∅, in a model M.

In the following two specific extension will be mentioned, the plain extension

L∀
λ with Const(L∀

λ) = Const(Lλ) ∪ {¬,∨,∀}

and the epsilon extension

L∀ε
λ with Const(L∀ε

λ ) = Const(Lλ) ∪ {¬,∨,∀, ε}.

If M is a model of L∀
λ, then (M, g) will denote the (expanded) model of the L∀ε

λ extension with a choice
function g described above.12

Some further (classical) notations will be used:

P → Q = ∨([¬(P )](Q)), P&Q = ¬(∨([¬(P )](¬(Q)))), (∀x)P = ∀((λx)P )

(εx)P = ε((λx)P ).

For further purposes the language L∀ε=
λ using identity of individuals is also introduced and the meaning

of = is defined as

(5) =: (o(ι))(ι) IpM(=) : M2 → {T,F}, (x, y) 7→ T, if x = y and F otherwise in a model M.

2.4. Examples.

Proposition 1. Let x be a variable and (M, g) be model over the language L∀ε=
λ . Then

(1) ` (∀x)(x = x) : o
(2) ` (εx)(x 6= x) = (εx)(x 6= x) : o
(3) [[(∀x)(x = x)]](M,g) = [[(εx)(x 6= x) = (εx)(x 6= x)]](M,g) = T

Proof. (1)

∀((λx)(x = x)) : o

(λx)(x = x) : o(ι) /

x = x : o

x : ι .=(x) : o(ι)

x : ι .= : [o(ι)](ι)

∀ : o(o(ι))

12Actually, epsilon-terms are special kind of Skolem functions; it is pointed out in [Monk, The Hilbert ε-operator, p. 481]
and in [Mints, Sec. 2.: Quantifier-Free Extensions of Formulas and ε-Theorems)].
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Here (= (x))(x) is denoted by x = x. The proof tree above shows that the expression ∀((λx)(x = x)),
which is the same as (∀x)(x = x), is typeabe by the type o. The labels . on the left sides of the leaves
mark the places which are called the “dischargeable premises” in proof theory. Their role is abandoned
at the node labeled by /. According to the part (2b) of Definition 5, both the x : ι-s are discharged by
the node (λx)([= (x)](x)) : o(ι), i.e. (x : ι) can be canceled from the context, which is now an empty
set. Note that, the use of the labels / and . are completely unnecessary, since the role of the variable x
is exactly that of the triangles. The variable x in the leaves marks the “dischargeable premises” and the
symbol (λx) marks the node discharging the premises labeled by the free variable x, and then x becomes
a bound variable.
(2)

(εx)(x 6= x) = (εx)(x 6= x) : o

(εx)(x 6= x) : ι

(λx)(x 6= x) : o(ι) /

x 6= x : o

x = x : o

x : ι .=(x) : o(ι)

x : ι .= : [o(ι)](ι)

¬ : o(o)

ε : ι(o(ι))

=((εx)(x 6= x)) : o(ι)

(εx)(x 6= x) : ι

(λx)(x 6= x) : o(ι) /

x 6= x : o

x = x : o

x : ι .=(x) : o(ι)

x : ι .= : [o(ι)](ι)

¬ : o(o)

ε : ι(o(ι))

= : [o(ι)](ι)

Here, according to definition, ε((λx)(x 6= x)) is denoted by (εx)(x 6= x) and ¬(x = x) is denoted by
x 6= x. The above proof tree proves that (εx)(x 6= x) = (εx)(x 6= x) is typeable by o.
(3)

[[(∀x)(x = x)]](M,g)
a = [[∀((λx)(x = x)]](M,g)

a

= [[∀]](M,g)
a ([[(λx)(x = x)]](M,g))a

= [[∀]](M,g)
a (ξ 7→ [[= (x)(x)]]

(M,g)
a[x→ξ])

= [[∀]](M,g)
a (ξ 7→ [[= (x)]]

(M,g)
a[x→ξ](ξ))

= [[∀]](M,g)
a (ξ 7→ [[=]]

(M,g)
a[x→ξ](ξ)(ξ))

= [[∀]](M,g)
a (ξ 7→ T)

= T

The second expression’s semantic value is trivial:

[[(εx)(x 6= x) = (εx)(x 6= x)]](M,g)
a = [[=]](M,g)

a ([[(εx)(x 6= x)]](M,g)
a )([[(εx)(x 6= x)]](M,g)

a )

= T



INDEFINITE DESCRIPTIONS IN TYPED LAMBDA CALCULUS 9

however, it is worth to determine the epsilon term’s value:

[[(εx)(x 6= x)]](M,g)
a = [[ε((λx)(x 6= x))]](M,g)

a

= [[ε]](M,g)
a ([[(λx)(x 6= x)]](M,g)

a )

= [[ε]](M,g)
a (ξ 7→ [[x 6= x]]

(M,g)
a[x→ξ])

= g({ξ ∈M | [[x 6= x]]
(M,g)
a[x→ξ] = T}) = g(∅)

= g({ξ ∈M | [[¬]]
(M,g)
a[x→ξ]([[=]]

(M,g)
a[x→ξ](ξ)(ξ)) = T}) = g(∅)

�

2.5. Epsilon-invariant expressions.

Definition 10. Let N ∈ Exp(L∀ε
λ ) be such that for a context (Ξ : Γ) the relation (Ξ : Γ) ` N : ϕ holds

for a type ϕ and let M be a L∀
λ model. N is said to be epsilon-invariant over the model M, if for every

assignation a of the type (Ξ : Γ) and choice functions g1, g2 : P(M)→M it holds that

[[N ]](M,g1)
a = [[N ]](M,g2)

a .

The notion above is a symbolic formulation of the intuitive term “epsilon-independent”. In FOL this
concept was applied to show that “epsilon-independent” sentences can be reformulated into an epsilon-
free one, provided the sentence is independent over every model.13

3. EPSILON AND APPLICATION

Theorem 1. Let P,Q ∈ Exp(L∀ε
λ ), M be a model of L∀

λ, (Ξ : Γ) a context, (Ξ : Γ) ` P : o,
(Ξ : Γ) ` Q : o and x ∈ Var(L∀ε

λ ), furthermore, let [(λx)P ]((εx)Q), P and Q be epsilon-invariant
over the model M. Then for every assignation a of the type (Ξ : Γ) and choice function g : P(M)→M :

[[[(λx)P ]((εx)Q)]](M,g)
a = [[((∀x)(¬Q)&(∀x)P ) ∨ (((∃x)Q)&(∀x)(Q→ P ))]](M,g)

a .

Proof. (1) Let the right hand side be T. First case: [[((∀x)(¬Q)&(∀x)P )]]
(M,g)
a = T. Then

[[(∀x)P )]]
(M,g)
a = T holds and let m = [[(εx)Q]]

(M,g)
a ∈M . Hence, by definition

T = [[(∀x)P )]](M,g)
a = [[∀((λx)P )]](M,g)

a

that is
[[(λx)P ]](M,g)

a =
(
ξ 7→ [[P ]]

(M,g)
a[x→ξ]

)
≡ T.

Hence
[[[(λx)P ]((εx)Q)]](M,g)

a = [[[(λx)P ]]](M,g)
a (m) = [[P ]]

(M,g)
a[x→m] = T.

Second case: [[(((∃x)Q)&(∀x)(Q→ P ))]]
(M,g)
a = T. Then

[[(λx)¬Q]](M,g)
a =

(
ξ 7→ [[¬Q]]

(M,g)
a[x→ξ]

)
6≡ T

hence for a ξ ∈ M [[Q]]
(M,g)
a[x→ξ] = T. Therefore, if [[ε((λx)Q)]]

(M,g)
a = m then [[(λx)Q]]

(M,g)
a (m) = T.

But from [[(∀x)(Q → P ))]]
(M,g)
a = T it follows that [[P ]]

(M,g)
a[x→m] = T, since [[Q]]

(M,g)
a[x→m] = T. Hence,

[[(λx)P ]]
(M,g)
a (m) = [[[(λx)P ]((εx)Q)]]

(M,g)
a = T.

(2) Suppose the left hand side is T. First case: let [[((∀x)(¬Q)]]
(M,g)
a = T, m ∈ M arbitrary and g′ is

13See [Blas].
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the choice function such that g′(∅) = m. Hence, by the epsilon-invariance of P and [(λx)P ]((εx)Q) it
follows that

T = [[[(λx)P ]((εx)Q)]](M,g)
a = [[[(λx)P ]((εx)Q)]](M,g′)

a = [[P ]]
(M,g′)
a[x→m] = [[P ]]

(M,g)
a[x→m]

therefore [[(∀x)P ]]
(M,g)
a = T. Second case: let [[((∃x)Q]]

(M,g)
a = T, m ∈ M arbitrary such that

[[Q]]
(M,g)
a[x→m] = T and g′ is the choice function such that g′({ξ ∈ M | [[Q]]

(M,g)
a[x→ξ] = T}) = m. Then

by the epsilon-invariance of P , Q and [(λx)P ]((εx)Q) it follows that

T = [[[(λx)P ]((εx)Q)]](M,g)
a = [[[(λx)P ]((εx)Q)]](M,g′)

a = [[P ]]
(M,g′)
a[x→m] = [[P ]]

(M,g)
a[x→m]

for every m such that [[Q]]
(M,g)
a[x→m] = T. Hence, [[(∀x)(Q→ P )]]

(M,g)
a = T

�

4. MORNING STAR AND KING OF FRANCE TESTS

The concluding facts can be stated in two claims:
(1) In the formal language L∀ε

λ (which is supposed to model the behaviour of descriptions) the
(closed) term (εx)Q has referential meaning in the sense that a fixed model (M, g) points out
an individual [[(εx)Q]](M,g) ∈M for (εx)Q as semantic value.

(2) In some cases, when (εx)Q is a part of a compound sentence [(λx)P ]((εx)Q), with all
its components being epsilon-invariant, the (εx)Q has a contextual meaning too, such that
the sentence [(λx)P ]((εx)Q) has an equivalent epsilon-free reformulation using quantified
expressions from the plain language L∀

λ.
We do not intend to set up a theory which is receiving fewer results than Russell’s Theory of Descriptions.
A new theory must serve at least as many solutions as far as Russell’s proposal was able to solve. An
appropriate indicator is to look at the two problems that the Theory of Descriptions solved and examine
what the new model results in this field. The first one is the problem of Hesperus and Phosphorus (below,
it will be called Morning Star Test), the second one is the problem of the empty names (the King of
France Test).

4.1. Morning Star Test. In 1905, Russell gave a FOL based solution of the so called Frege Puzzle by
RTD, understandably, without mentioning the intensional tools of possible world semantics, which is a
much later development. Here, I would like to show briefly that even the exposition of the puzzle is so
widely criticized, that the RTD result of the test is rather irrelevant to us.

“Gottlob thinks that the Morning Star is illuminated by the Sun.”
“The Evening Star is the Morning Star.”
—
“Gottlob thinks that the Evening Star is illuminated by the Sun”. (Cf. [Freg].)

First of all, I would like to point out that several scholars are committed to the standpoint that the
names such as “the Morning Star” or “the Evening Star” are understood tacitly as definite descriptions.
For Russell, these names abbreviate descriptions, hence they are denoting phrases too.14 The problem
is that, according to Leiniz’s Rule, since the Evening Star is the Morning Star, the two phrases are
interchangeable. However, the above inference does not seem to be valid, since it is possible that Gottlob
thinks that the Morning Star is illuminated by the Sun, but he does not necessarily know this fact about
the Evening Star, even if in reality the two planets are the same, which is the case. Russell’s solution
was that the phrases “the Morning Star” and “the Evening Star” are not proper names, they only have
contextual meanings, hence they are not interchangeable due to formal reasons.15

14[Dumm, p. 97].
15See [Russ] and [Whit].
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In the epsilon language L∀ε
λ , the definite descriptions are proper names, they are manifested as epsilon

terms on the object language level, hence the epsilon modelling fails the Morning Star Test, it does not
explain the puzzle. Fortunately, hitherto, the Frege Puzzle and the semantic status of the expressions
like “the Morning star” are not completely solved. If the phrase “the Morning star” is a rigid designator,
what is Kripke’s proposal, then the Puzzle is solved. Here, temporarily, not having modal context, ‘rigid’
means that the model points out a single individual immediately, and does not select first a set, then a
member of it, by a choice function.16 Then the puzzle only says that, if planet Venus is illuminated by
the Sun, then planet Venus is illuminated by the Sun. According to Kripke’s solution the problematic
one is the sentence “The Evening Star is the Morning Star”. It is a necessary truth, but it may be
epistemologically problematic.17 For the epsilon model, the solution is the same. According to Monk
the closed epsilon terms are constants, therefore they are rigid designators in accordance with the Kripke
doctrine. However, as Fitting pointed out, an epsilon term, being description-like, can neither be a
constant, nor a variable. It is a complex flexible designator.18 Here, if “the Morning star” is a complex
demonstrative (selected by a descriptive term in the actual world), then it is a rigid designator.19 Clearly,
now, I do not have to deal with the modal context of epsilon terms, knowing that the highly applicable tool
of demonstratives might make the modal approach much more complex, and might not add essentially
more to the above consideration.

4.2. The King of France Test. Consider the following two sentences
“The present King of France is bald.”
“The present King of France is not bald.”

In order to determine the truth value of the first one, let us imagine the set of all bald people. Since the
present King of France is not in this set, the first sentence is false. But, the same reasoning leads to the
fact that the second sentence is false too. Which is a contradiction. Hence, the phrase “the present King
of France” is not a proper name, it cannot have a meaning in isolation, rather it only has a contextual
meaning and the sentences containing such phrases are quantified formulas. This is Russell’s solution.
In the epsilon calculus the semantic values of the epsilon terms are defined in any cases. The two
sentences above are unproblematic, having the phrase “the present King of France” an existing individual
as reference. And it is either bald or not bald. According to Theorem 1 of the present paper, the sentences
may possess contextual meaning too, where the truth value is also well-defined. Of course, the reference
of “the present King of France” in the epsilon calculus is not the present King of France. Approaching
the situation on a more formal level, let us consider the symbolic sentence

(εx)(x 6= x) = (εx)(x 6= x)

This is a sentence containing terms which are ill-defined as descriptions: x 6= x is an empty predicate.
However, the semantic value of (εx)(x 6= x), in a given model, is well-defined. Moreover, (εx)(x 6=
x) = (εx)(x 6= x) is an epsilon invariant sentence, since, it is true in any given epsilon semantics. And
indeed, there are epsilon semantics (for example the Bourbaki group’s formal systems), where (εx)(x 6=
x) = (εx)(x 6= x) is syntactically identical to the sentence (∀x)(x = x). (εx)(x 6= x) = (εx)(x 6= x)
is an epsilon-invariant sentence, which has contextual meaning too: it is equivalent to the fact that every
individual is identical to itself.
The situation is very similar to the problem of the interesting-looking man holding a martini. In this
case, the “the present King of France” is rather a person who is, in fact, bald, but not the present King of

16Of course, it is a rough simplification. Picking an individual means direct reference, rigid means the term has the same
semantic value along the possible worlds. What is more, the notion of ‘rigid’ above is understandable, but mathematically
vague.

17See [Krip, p. 102]. The whole story can be found in [Zvol].
18See [Fitt].
19See [Kapl].
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France, and (εx)(x 6= x) is an existing individual, which is identical to itself, but of course, it does not
hold that it is not the same as itself.
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