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Abstract

Giving birth to Finite State Phonology is classically attributed to
Johnson (1972), and Kaplan and Kay (1994). However, there is an ear-
lier discovery that was very close to this achievement. In 1965, Hennie
presented a very general sufficient condition for regularity of Turing ma-
chines. Although this discovery happened chronologically before Gen-
erative Phonology (Chomsky and Halle, 1968), it is a mystery why its
relevance has not been realized until recently (Yli-Jyrä, 2017). The an-
tique work of Hennie provides enough generality to advance even today’s
frontier of finite-state phonology. First, it lets us construct a finite-state
transducer from any grammar implemented by a tightly bounded one-
tape Turing machine. If the machine runs in o(n logn), the construction
is possible, and this case is reasonably decidable. Second, it can be used
to model the regularity in context-sensitive derivations. For example,
the suffixation in hunspell dictionaries (Németh et al., 2004) corresponds
to time-bounded two-way computations performed by a Hennie machine.
Thirdly, it challenges us to look for new forgotten islands of regularity
where Hennie’s condition does not necessarily hold.

1 Introduction

Generative phonology (Chomsky and Halle, 1968) is a rule-based string rewriting
system that has been scrutinized carefully over the years of its existence. One of
the major weaknesses of the system is that it has been proven to be equivalent
to Turing machines (TMs) (Chomsky, 1963; Johnson, 1972; Ristad, 1990). As
the derivations of such a machine do not necessarily terminate, the system is
seriously defective and impossible to falsify. Thus, an unrestricted rewriting
allowed by Generative Phonology does not make a very good scientific theory
in the light of Popper (1959), see also (Johnson 1972:32).

In spite of the original shortcomings and the increased depth in the current
phonological theory, the original “SPE” formalism is interesting for its own sake.
First, the formalism has been employed extensively in natural language process-
ing and descriptive linguistics. There, it has been used to express phonological
generalizations based on empirical data. Second, revisiting the original formal-
ism and its decidable subsets can produce valuable ideas that are applicable
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to more ambitious theories, such as Optimality Theory (Prince and Smolensky,
2002) and Harmonic Serialism (McCarthy, 2000).

1.1 The Well-Known Islands of Regularity

When realistic grammar instances in Generative Phonology have been studied
closely, a striking contrast between the original undecidable theory and the
actual grammars has been discovered. In pioneering studies (Johnson, 1972;
Kaplan and Kay, 1994), most practical grammars in Generative Phonology have
been shown to satisfy a two-part condition under which they correspond to
finite-state transducers:

1. Non-self-embedding. Directional or simultaneous context-sensitive rules
whose non-contextual parts do not apply to their own output are finite-
state (Kaplan and Kay 1994:363,365).

2. Finite composition. If a grammar is defined as a finite sequence of
rewriting rules, each of which is a regular relation, then the grammar as a
whole represents the regular relation given by their composition (Kaplan
and Kay 1994:364).

These observations have led to the development of algorithms for transform-
ing restricted fragments, or islands, of Generative Grammar into finite-state
transducers. For example, the algorithm of Mohri and Sproat (1996) constructs
transducers from rules that are applied in a directed fashion. Karttunen (1995)
treats various application modes and different types of context conditions. These
finite-state islands in Generative Phonology have become standard textbook
material (Jurafsky and Martin, 2000; Beesley and Karttunen, 2003) and many
redesigned compilation algorithms have been proposed to pursue efficiency, flex-
ibility and the generally correct semantics.

The literature of methods that compile individual rules into finite-state
transducers suggests that regularity of phonological grammars is to be proven
inductively, by using operations that preserve regularity of regular relations.
But we should not overlook a more extensive picture of regularity as a prop-
erty of the relation rather than as a property of the construction. Therefore,
we should now start to pursue for a wider understanding of the archipelago of
finite-state islands in generative theories as well as in all computational models
of language.

1.2 The Search for Further Islands

Proving that the input-output relation defined by a grammar is regular is a
complicated task. The known finite-state islands and the closure properties of
finite-state transducers solve only the easy cases where the application order
of rules is fixed and the rules can be combined under a finite composition.
But if the grammar contains iterative rules, we do not have a general method
that would return a non-iterative grammar. The regularity of the string relation
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defined by iterative rules is computationally undecidable already for context-free
grammars (Stearns, 1967; Greibach, 1968), not to talk about Turing machines
and equivalent grammars systems.

In light of this, we see that the fundamental results in Finite-State Phonol-
ogy (Johnson, 1972; Kaplan and Kay, 1994) have given us only islands, sufficient
conditions where the grammars or parts of grammars are finite-state and gen-
erate regular relations. They do not exclude new conditions that can also be
valuable. New conditions are, ideally, constructive and turn a formerly noncon-
structive property into a method that gives a finite-state transducer.

For example, it has been obvious since Chomsky and Halle (1968) that a
phonological grammar is regular when it contains only right-linear (or left-
linear) rules (Chomsky, 1963). The left-linear rules have the general shape
α → βγ where α, β, γ are symbols and β does not match any left-hand side
in the grammar rules. The achievement of Johnson (1972) was to expand the
default regular subset of Generative Phonology by showing that the linear and
the simultaneous application of phonological rules with context conditions can
also generate a regular relation.

Kaplan and Kay (1994) also discuss general situations that are usually known
as cyclic derivations (Mohanan, 1986). For example, the word unenforceable
has the recursive structure [un[[en[force]]able]]. Here the phonological rules
are applied first to the innermost part, force. Then the innermost brackets are
removed and the application is repeated until no brackets are left. Kaplan and
Kay point out that ”there may be restrictions on the mode of reapplication that
limit the formal power of the [cyclic] grammar...”. However, Kaplan and Kay
(1994:365) seem to think that these restrictions are analogous to context-free
grammars with only right- or left-linear rules.

Besides context-free grammars with only right- or left-linear rules, there are
also self-embedding grammars that generate regular languages. For example, the
context free grammar S → aS | Tb; T → Tb | c generates the regular language
a∗cb∗ and the context-sensitive grammar S → aS; aS → abT ; bT → cbT | c
generates the regular language a∗c. In these examples, the grammars look simple
but are not immediately regular on the basis of the shape of their rules.

In the sequel, Section 2 presents a concrete example of a very simple context-
sensitive formalism whose conversion to a finite-state equivalent grammar is
tricky. In Section 3, the reader is familiarized with a one-tape Turing machine
and Hennie’s sufficient condition for regularity. The paper closes with remarks
in Section 4.

2 Safe Unbounded Composition

We will now give an example of a grammar whose regularity is not obvious on
the basis of the standard conditions.
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2.1 hunspell

Our example of a non-classical finite-state grammar is the hunspell formalism
(Németh et al., 2004) that represents a stage in the development of spell checking
algorithms. We only discuss its suffix rules and ignore many details of the
formalism.

The hunspell formalism is used to inflect and derive word forms by a combi-
nation of continuation classes, truncation and appending. The formalism resem-
bles the Item and Process morphology (Hockett, 1954) and Lexical Phonology
(Mohanan, 1986). The formalism involves .dic and .aff files that specify the
initial word forms and the steps to produce other word forms:

.dic: glossy/T

.aff: SFX T y iest Cy
(1)

The word form glossiest is the combination of an input word glossy, having the
continuation class T, and a suffix rule (marked with SFX). The suffix rule, for
the continuation class T (T in the 2nd column), states that the last vowel -y (y
in the 3rd column) is replaced with -iest (iest in the 4th column) if preceded
by a consonant and the vowel -y (condition Cy in the 5th column).

When the hunspell dictionary formalism is interpreted as a rewriting sys-
tem, we see that the derivation glossyT ⇒ glossiest# is described with a
Generative Phonological rule (2):

Superlative Formation:

[y]T→ [i][e][s][t][#] / C
(2)

While the shape of such a rule is context-sensitive, it is not difficult to see that
this rule can be implemented with a non-deterministic finite-state transducer.
Furthermore, the suffix rules seem to be applied out from the stem, at the right
boundary of the string. However, such similarity with right-linear grammars
is only partial and does not imply that it would be easy to compile the whole
dictionary into a finite-state transducer. There are two reasons:

• The rules do not only rewrite the continuation classes but they may also
back up and rewrite the phonological content produced earlier, requiring,
thus, two-way movements.

• The rules are non-monotonic: they can expand and shorten the input.

In order to analyse what actually happens, we need to construct a model that
shows how the dictionary form is processed by the affix rules.

2.2 Automaton Models

Now we analyse hunspell by viewing the derivation steps of its word formation
as a process that corresponds to a computation by a particular TM.
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The general definition of a Turing machine is assumed to be familiar to the
reader. In short, it is a combination of a finite-state automaton and a rewritable
two-way working tape that is initialized with the input string of length n. The
machine is allowed to append new letters arbitrarily to the input string; thus
the working tape is infinite. A TM can also have auxiliary tapes, but we will
restrict ourselves to one-tape TMs.

If we implement the derivation by the moves of a non-deterministic one-
tape TM, we obtain a machine that sweeps the working tape three times in
a row. During the first pass (3.1), the machines recognize the stem (glossy)
and its continuation class (T), then rewinds the tape (3.2) to the beginning
of the string and non-deterministically replaces the substring syT$$$ with the
substring siest# during the final pass (3.3):

$ # g l o s s y T $ $ $ $ · · ·
→ → → → → → → → → (3.1)

← ← ← ← ← ← ← ← ← (3.2)
→ → → → → → → → → → → → (3.3)
$ # g l o s s i e s t # $ · · ·

(3)

Since regular relations are closed under composition, a finite number of simi-
lar suffix rules could be applied in a row and the lexicon would still be regular. In
this way, k suffix positions of morphology could be treated. The corresponding
non-deterministic TM would rewind the tape k times to the beginning. Thus,
the total time complexity is in O(nk) when the string on the tape occupies
at most n tape squares. Thus, the non-deterministic TM implementation of a
finite composition has linear time complexity.

In a more general situation, one does not want to specify the maximum
number of suffixes explicitly. One reason can be that, in some languages, the
suffixes can be added recursively after one other. For example, a Turkish word
can, in principle, have an arbitrary number of suffixes although only some of the
combinations are interpretable. Another example involves Old Georgian where
the nouns can theoretically have unlimited number of case-number markers
(Michaelis and Kracht, 1997). Finally, orthographic compounding of many lan-
guages can involve several stems and alternating bound morphemes. For exam-
ple, the Swedish word (with our morpheme boundaries) Sp̊ar-vagn-s-aktie-bolag-
s-sken-smut-s-skjut-are-fack-förening-s-personal-beklädnad-s-magasin-s-förr̊ad-s-
förvaltar-en-s contains 14 stems and, in addition, several bound morphemes.
Similar and much longer examples can be found in other languages. E.g. a
431-letter word appears in the Sanskrit literature. Thus, it is hard to argue
that the number of rule applications has a finite upper bound in general.

The unbounded number of applications of suffix rules breaks the two prin-
ciples: non-self-embedding rules and finite composition. Moreover, the
implementation based on a rewinding TM would spend O(n2) time to produce
the derived string through the back and forth sweeps that simulate the compo-
sition steps.

We can, however, improve the TM implementation by optimizing its moves.
Instead of rewinding the tape completely, the improved computation strategy
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(4) just backs up until it has tested the precondition. In our example, the
precondition is just the suffix [C][y][T]:

→ → → → → → → → (4.1)
$ # g l o s s y T $ $ $ $

← ← ← (4.2)
→ → → → → → (4.3)
s i e s t # $

(4)

With this change, long words are produced in a zigzag style (5) where every
rule application may back up some letters.

→ →
←↩

↪→ →
←↩

↪→ →
...

←↩
↪→ →

(5)

Since the union of the affix-rules is applied repeatedly to its own output, the
standard two-part regularity condition of phonological grammars does not apply.
However, as long as the derivation deletes and appends new material only at the
right end of the string, the resulting process is linear and, intuitively, a regular
grammar. In addition, the moves taken by the TM can now be deterministic
because the machine does not completely rewind the tape at any point but
always makes relative moves that allow it to remember its previous position.

2.3 Linear Encoding

Although the grammar represented by a hunspell lexicon does not satisfy the
classical two-part condition of finite-state phonology, it is equivalent to a finite-
state transducer when restricted to the suffix rules.

There are now some methods to compile hunspell lexicons to finite-state
transducers. Early experiments on compilation are due to Gyorgy Gyepesi (p.c.,
2007) and others in Budapest. The author developed his solution (Yli-Jyrä,
2009) using a variant of Two-Level Morphology (Koskenniemi, 1983). This
method viewed the lexicon as a collection of constraints that described linearly
encoded backing up and suffixation in derivations. The method included an effi-
cient one-shot compilation algorithm to compile and intersect several hundreds
of thousands of lexical context restriction rules in parallel as if the lexical contin-
uations (morphotaxis) were phonological constraints. A similar method, finally
implemented by his colleagues, Pirinen and Lindén (2010), separated the lexi-
cal continuations from the phonological changes at morpheme boundaries and
used a three-step approach where the final step composed the lexicon with the
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phonology. A separate compiler for lexical continuations was used and a two-
level grammar described the phonological realization of morphemes in different
contexts.

The key to understanding the method of Yli-Jyrä (2009) is that the compu-
tations of the TM are encoded as a linear string (6.2). This string is produced
if the derivation actually reaches the final continuation class # whereas infinite
loops do not correspond to an output string.

gloss y (6.1)
<#><Root>glossδy<T>δ−1iest<#> (6.2)

gloss iest. (6.3)
(6)

Whenever the machine overwrites its own output, the overwritten part (al-
ready on the left from the current position) is marked as deleted. The deleted
material is put between <D> and <-D>, two symbols abbreviated now as δ and
δ−1, respectively. The occurrence these optional lexical symbols is enforced in
deleting contexts but banned otherwise, corresponding to the surface realiza-
tions with and without contractions. For example, the segment y in (6.2) is
surrounded by a pair of δ and δ−1 because it is cancelled by -iest, the next
hunspell affix.

The derivation of the combination of glossy and -iest is encoded as string
(6.2). This internal string is then mapped to the output string (6.3) by a
transducer that deletes the markers and the material enclosed between each
pair of δ and δ−1. The computation can also be mapped to the dictionary form
(6.1) by removing the markers and the material that belongs to the affixes.

An interesting part in the method is that the underlying derivation encodes
a computation of a bounded Turing machine (6.2). This string is produced with
context-restriction rules introduced in two-level phonology (Koskenniemi, 1983).
Since the output deletions are taken care of by the simple transducer between
(6.2) and (6.3), it is sufficient to describe only one representation level. The
three rules in (7) describe where the root (Root) of the lexicon is visited, where
a continuation class T is reached, and how the next (in fact final) continuation
class is reached after a consonant, a cancelled y and new material corresponding
to lexical -iest.

<Root> => <#> ; # the root symbol

<T> => <#>δ∗<Root>δ∗gδ∗lδ∗oδ∗sδ∗sδ∗yδ∗ ; # glossy/T

<#> => Cδy<T>δ−1δ∗iδ∗eδ∗sδ∗tδ∗<#>δ∗ ; # SFX T y iest Cy

(7)

The one-level representation of the underlying derivation works immediately in
cases where the successive deletions are disjoint from each other. It can also be
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extended to cases where the deleted parts are nested:

abcef<A>︷ ︸︸ ︷
abcδeδf<A>

gh<B>︷ ︸︸ ︷
δ−1gh<B>

hij<C>︷ ︸︸ ︷
δ−1hij<C>︸ ︷︷ ︸

truncate f before gh<B>︸ ︷︷ ︸
truncate egh before hij<C>

(8)

The main functional difference between the methods described by Yli-Jyrä
and Pirinen and Lindén is in the way they treat non-disjoint deletions. While the
former method encodes the sequence of derivation steps as one string, the latter
encodes the lexical morpheme sequences on one string and then the contracted
sequences in the other level. The latter method describes the contractions at
morpheme boundaries via two-level rules that constrain the way in which the
underlying phonemes of a morpheme are realized in the adjacency of various
affixes. In this approach, a contraction corresponds to zero realization.

abcef<A>︷ ︸︸ ︷
abc e f<A>

gh<B>︷ ︸︸ ︷
gh<B>

hij<C>︷ ︸︸ ︷
hij<C>

abc 0 0 0︸ ︷︷ ︸
truncate f before gh<B>

00 0

︸ ︷︷ ︸
truncate efgh before hij<C>

hij 0 (9)

Since the truncations in this representation (9) are specified in parallel rather
than one after another, the semantics of the variant (Pirinen and Lindén, 2010)
deviates slightly from the original method (Yli-Jyrä, 2009).

In particular, note that the addition of the suffix hij<C> in (8) and (9)
requires different suffixation rules as the truncations behave differently. The rule
applied in (9) must truncate more symbols. This semantic difference between
the two methods can be compensated with an additional pre-processing step
that expands the set of suffixation rules. During this step, a suffix rule that
completely cancels the previous affix is replaced with a suffix rule that is applied
before the completely cancelled affix. However, for most hunspell lexicons,
the cancellation is restricted to the most recent suffix, which means that the
preprocessing step can be heuristically ignored.

3 The Loosest Sufficient Condition

In the previous section, we related the hunspell derivations to one-tape TMs.
One reason to do so was that the regularity of one-tape TMs is an old and
carefully studied, well-understood problem.

In this section, we first relate one-tape Turing machines with transducers
(§3.1-3.2). Then we study bounded one-tape TMs that implement regular re-
lations (§3.3). We will use the bounded one-tape TMs to give a new proof for
the two-part regularity condition (§3.4) and to find a more general condition for
a finite-state subset of Generative Phonology (§3.5). Finally, we observe (§3.6)
that even this condition does not cover all natural finite-state grammars.
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3.1 One-Tape TMs as Transducers

Usually one-tape TMs and Hennie machines are viewed as language recognizers.
Since it is not possible to construct a Hennie machine with two readable tapes
Hennie (1965), the connection between Hennie machines and one-way two-tape
finite-state transducers is not obvious from the beginning. In fact, most of
the relevant literature discusses Hennie machines as if they were equivalent to
one-tape finite-state automata only.

As a notable exception, Engelfriet and Hoogeboom (2001) connect Hennie
machines to two-way two-tape finite-state machines. These machines are not
allowed to read their output tape, but they are more powerful than ordinary
finite-state transducers.

Our way to view one-tape Turing machines as transducers requires only the
input tape with both reading and writing. As the machine modifies the contents
of the input tape during its computations, the input tape will be occupied with
an output string when the machine halts. Thus, every one-tape TM recognizes
three sets:

• the set of input strings that occur as the initial content of the working
tape in an accepting computation.

• the set of output strings that occur as the final content of the working
tape in an accepting computation.

• the relation consisting of the input-output string pairs where the
first string is the initial content and the second string is the final content
of the working tape in an accepting computation.

Given the last definition, every one-tape TM can be viewed as a recognizer of a
binary relation.

3.2 Finite-State Transducers as One-Tape TMs

It is immediate that one-way finite-state transducers are equivalent to one-tape
Turing machines: One-way (non)deterministic finite-state transducers are a spe-
cial case of two-way (non)deterministic finite-state transducers and these are a
special case of (non)deterministic two-tape Turing machines that are equivalent
to deterministic one-tape Turing machines.

If we restrict ourselves to finite-state transducers whose output preserves the
length of their input, we can view these transducers as one-tape finite automata
with a letter-pair alphabet (Kaplan and Kay, 1994). This gives an even more
direct link from finite-state transducers to one-tape Turing machines.

The restriction to these letter transducers is not a serious restriction if we
assume that the necessary 0’s are introduced non-deterministically to the input
string by an inverse homomorphic mapping h−1 : Σ∗ → (Σ ∪ {0})∗ that pre-
serves the alphabet Σ. The 0’s are then removed from the output string by the
homomorphism h : (Σ ∪ {0})∗ → Σ∗. In addition, we assume that all states of
the transducer have a self-loop on the letter pair (0, 0).
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# W O R D I N G # # · · ·
q0 q1 q2 q3 q4

q7 q6 q5 ←↩
↪→ q8 q9 q10 q11 . . .

Figure 1: The crossing sequence between the 3rd and the 4th squares is
(s1, s2, s3) = (q3, q6, q9).

Let R1 and R2 be regular relations recognized by unrestricted finite-state
transducers, and let R′1 and R′2 be the corresponding same-length relations rec-
ognized by the letter transducers with the self-loops. Now we have the equation:

R1 ◦R2 = h−1 ◦R′1 ◦R′2 ◦ h.

It is now obvious that same length relations R′1, R′2 and even R′1 ◦ R′2 can be
implemented as non-deterministic one-tape TMs that recognize the relations in
O(n) time by transforming the initial content of the tape to the final content of
the same tape.

3.3 TMs Running in O(n) Time

The most ground-breaking regularity condition for one-tape TMs is due to Hen-
nie. Hennie’s result is the converse to the fact that every one-way deterministic
finite automaton is a deterministic TM. The machines considered by Hennie do
not only include all one-way deterministic finite automata and letter transduc-
ers but they also extend them in two particular ways: (1) the one-tape TMs can
move back and forth on the tape, (2) they can overwrite on the squares of the
tape several times.

Hennie (1965) showed that a deterministic one-tape TM is equivalent to a
finite automaton if it runs in O(n). The result of Hennie have been extended,
by Tadaki et al. (2010) to linear-time non-deterministic one-tape TMs whose
o(n) time bound includes all accepting computations. A deterministic and non-
deterministic linear-time one-tape TM are called a Hennie machine and a non-
deterministic Hennie machine, respectively. Both of these one-tape machines
recognize a regular relation on the basis of Section 3.1.

Hennie analysed the expressive power of one-tape machines using the concept
of crossing sequence (aka schema) (Rabin, 1963; Trakhtenbrot, 1964; Hopcroft
and Ullman, 1979; Birget, 1996) that is strongly related to visiting sequences
(Fischer, 1969). This concept is a powerful tool in the analysis of the behaviour
of two-way automata and one-tape TMs. It refers to the sequence of target
states s1, s2, ... visited by a TM when its pointer crosses the boundary between
a pair of adjacent tape squares. States s1, s3, ... are reached when the pointer
moves forward and states s2, s4, ... are reached when pointer moves backwards.
Figure 1 shows how states are visited during a computation and how a crossing
sequence is defined.
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Every Hennie machine satisfies, by definition, the property that the length
of its crossing sequences is bounded by an integer (Hennie, 1965). Since the
finiteness of crossing sequences implies that the TM is equivalent to a finite-state
automaton, this bound lets us construct an equivalent finite-state device. The
good news is that for all Hennie machines, a bounding constant k is computable
(Kobayashi, 1985; Tadaki et al., 2010).

Pr̊uša (2014) showed that, if a deterministic Hennie machine recognizing
the input language has m states and n working symbols, we can construct a

minimal deterministic finite automaton that has 22
O(n log m)

states. Thus, Hennie
machines recognising the input are much more succinct than the equivalent
minimal deterministic automaton. Obviously, a deterministic letter transducer
constructed from a Hennie machine is not smaller than the minimal automaton
recognizing only the input language aka the domain of the transducer.

3.4 Completeness with Respect to Prior Art

Now we can prove that Hennie machines can be used, on the one hand, to build a
finite-state subset of Generative Phonology using the two-part condition of non-
self-application and finite composition, and, on the other, to obtain compilation
methods for such grammars that previously required specialized encoding and
a compilation algorithm.

Theorem 1. Composition of regular relations is a regular relation.

Proof. Let R1 and R2 be regular relations and R′1 and R′2 the respective same-
length regular relations. Then there are, respectively, two non-deterministic
Hennie machines T1 and T2 that recognize R′1 and R′2. The composition R′1 ◦R′2
is then computed by a Hennie machine that first runs like T ′1, then rewinds
the tape and runs like T ′2. Since the combined machine preserves the string
length, it is equivalent to an epsilon-free finite-state transducer that recognizes
the relation R′1 ◦ R′2. The composition h−1 ◦ R′1 ◦ R′2 ◦ h is then equivalent to
the regular relation R1 ◦R2.

Theorem 2. The non-self-embedding application of rule of the form α→ β/λ ρ
corresponds to a regular relation.

Proof. Extend the original tape alphabet so that each square contains the in-
put letter and a Boolean vector indicating the validity of left and right context
conditions of the simultaneous rules. Let ML (MR) be a deterministic (co-
deterministic) pattern matching automaton. The state computed by this au-
tomaton indicates, for each string position, the type of the prefix (suffix) of the
position. Modify this pattern matching automaton by adding self-loops on 0’s.
Then transform the automaton into a finite-state transducer M ′L (M ′R) in such
a way that each transition adds the information on the occurring left (right)
contexts to the Boolean vectors of each square. This epsilon-free transducer is
a Hennie machine. The composition M ′L ◦M ′R is then a Hennie machine that
marks the occurring contexts at all squares.
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As a pre-processing step, make the length of each left-hand side α and the re-
spective right-hand side β identical by padding the shorter with 0’s. In addition,
add synchronous 0’s freely to both. In this way we obtain a letter transducer
that recognizes a 0-padded representation of the regular relation α× β.

Define a Hennie machine M1 that sweeps the string (containing 0’s) from
left to right and non-deterministically overwrites ranges of squares that contain
some left-hand-side string α with a corresponding right-hand-side string β when
the first and the last square in the input range indicate the presence of the
required left and right context, respectively. Define also a Hennie machine M2

that removes the Boolean context vectors from the tape squares. Now the
composition M ′L ◦M ′R ◦M1 ◦M2 is recognized by a Hennie machine M . Then
h−1 ◦ M ◦ h is equivalent to a non-deterministic finite-state transducer that
captures the semantics of the rule.

We have now used Hennie machines to show that simultaneous non-overlap-
ping rules are regular and that a finite composition of regular rules preserves
regularity. Other application modes of regular grammars are discussed in (John-
son, 1972; Kaplan and Kay, 1994). The regularity of these application modes
can be proven similarly.

To conclude our argument, we show that Hennie machines actually help us
to compile hunspell dictionaries without special encodings.

Theorem 3. The iterated application of monotonic suffix rules of a hunspell

grammar makes a regular relation.

Proof. Every suffix rule corresponds to a Hennie machine that backs up check-
ing its context condition and then writes the non-truncated context and the
new suffix (4.2-4.3). The union of such Hennie machines is a non-deterministic
Hennie machine M . The closure M∗ is a TM that applies suffix rules itera-
tively. As the suffix rules increase the length of the string monotonically, the
closure M∗ has a finite bound for the crossing sequences and recognizes a regular
relation.

3.5 The Bound that Cannot Be Improved

The Borodin-Trakhtenbrot Gap Theorem (Trakhtenbrot, 1964) states that ex-
panded resources do not always expand the set of computable functions. In
other words, it is possible that the regularity of a TM holds even if the O(n) is
made slightly looser. A less tight time bound is now expressed with the little-o
notation: t(n) ∈ o(f(n)) means that the upper bound f(n) grows much faster
than the running time t(n) when n tends to infinity: limn→∞ t(n)/f(n) = 0.

As an application of the Gap Theorem, Hartmanis (1968) and Trakhtenbrot
(1964) showed independently that the time resource of finite-state equivalent de-
terministic one-tape TMs can be extended from O(n) to o(n log n). This bound
is tight: regularity is algorithmically unsolvable for any bound that exceeds n+1
in Ω(n log n) Gajser (2015). The extended time bound has been generalized to
non-deterministic one-tape TMs by Tadaki et al. (2010). These extensions of
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Hennie’s core result give us a new sufficient condition for the regularity of Gen-
erative Phonology.

Theorem 4. A generative phonological grammar is regular if its one-tape TM
implementation runs in o(n log n) time.

Let M be a one-tape TM implementation of a generative phonological gram-
mar. The finiteness of the crossing sequences of a given TM is, in general, unde-
cidable (Pr̊uša, 2014), but there is a reasonably good decision procedure: To test
if M is equivalent to a finite-state transducer, we can pick a function t(n) that
is in o(n log n) and test if M actually runs in t(n). Interestingly, Gajser (2015)
showed that for any reasonable function t(n), we can decide whether a TM M
runs in t(n). If a TM then runs in t(n), it actually runs in O(n) (Pighizzini,
2009). Thus, the new one-sided condition for regularity of the phonological
grammar has a sound approximate solution.

3.6 The Existence of Non-Hennie Finite-State Grammars

If the suffix rules are non-monotonic and can shorten their inputs, the TM can
produce the same configuration again and again and produse arbitrarily long
crossing sequences. The repetition may happen either a finite or an infinite
number of times. Interestingly, the specialized compilation method (Yli-Jyrä,
2009) handles both cases correctly whereas we fail to get a Hennie machine if
the suffix rules are non-monotonic.

Non-monotonic suffix rules are an example of a situation where the TM
is equivalent to a Hennie machine that restricts the length of the crossing se-
quences. The bad news is that we do not know when we have a correct Hennie
machine: it is difficult to find such bound k for the length of crossing sequences
that a given TM preserves its semantics when longer crossing sequences are
abandoned. Since a sufficient bound k is such that the semantics of the re-
stricted TM does not change although we allow longer crossing-sequences, there
are reasonable ways to probe possible values of k, but such probing is still
heuristic.

The difficulty of non-monotonic grammars indicates that although we now
have a more general condition for those generative phonological grammars that
are equivalent to a finite-state transducer, a specialized compilation algorithm
may still encode infinite loops in a way that seems to be beyond of the Hennie
condition.

4 Conclusions

It is historically interesting that Hennie’s regularity condition dates back to the
year 1965, that is even before Chomsky and Halle (1968).

No decision procedure for the classical two-part condition (Johnson, 1972;
Kaplan and Kay, 1994), is known. Compared to this situation, it is remarkable
that the new sufficient condition has several advantages:
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• The new regularity condition has approximations that are decidable (Gajser,
2015)

• The equivalent finite-state transducer can be constructed from a Hennie
machine (Hennie, 1965)

• The Hennie machines are extremely succinct compared to finite-state ma-
chines (Pr̊uša, 2014)

• Hennie machines seem to provide a more general framework for prov-
ing regularity of phonological grammars than the arguments based on
bimachine construction (Johnson, 1972) or non-self-embedding grammars
(Kaplan and Kay, 1994).

There are many interesting questions that could be studied in the future.
Here are some:

1. Despite the advantages of Hennie machines, the author is not aware of any
finite-state library that would be based on Hennie machines. Would it
be possible develop a finite-state library that would use Hennie
machines to represent regular relations more compactly?

2. There does not seem to be much work that would link Hennie machines
and 2-way finite-state transducers to minicomplexity, the computational
complexity of 2-way finite automata, that has recently obtained attention
in automata theory (Kapoutsis, 2012). Could some of the related
results be extended to Hennie machines?

3. If a Hennie machine is used to implement a weighted rule system, the
machine must be constructed more carefully than what we have done
now: the 0-loops create new paths that make the computation of string
weights tricky. Can we introduce weighted Hennie machines and
relate them to weighted automata?

4. We would like to understand why some natural finite-state grammars, like
nonmonotonic hunspell grammars, are finite-state although their crossing
sequences seem to have no finite bound. Are there thus other natural
islands of regularity we should know about?

There are several potential applications for Hennie machines in Natural Lan-
guage Processing. We have already demonstrated that Hennie machines have
applications in phonology and morphology (Yli-Jyrä, 2009). Weighted Hennie
machines may be applied to OCR that is based on weighted context-dependent
correction rules (Drobac et al., 2017). Furthermore, non-monotonic Sequential
Constraint Grammar is computationally undecidable but has restrictions that
have Hennie machine characterizations (Yli-Jyrä, 2017). The search for gener-
ative dependency grammars that produce non-projective trees is an area that
may also benefit from the concepts of crossing sequences and Hennie machines
(Nederhof and Yli-Jyrä, 2017).
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