
K + K = 120 / p. 105 / May 3, 2019

K + K = 120: Papers dedicated to L. Kálmán & A. Kornai on the occasion of their 60th birthdays, pp. 105–140

OT grammars don’t count,
but make errors

TAMÁS BIRÓ
ELTE Eötvös Loránd University, Budapest
tamas.biro@btk.elte.hu

KEYWORDS

Optimality Theory
Harmonic Grammar
strict domination
simulated annealing
ICS Architecture

ABSTRACT

Our goal is to compare Optimality Theory (OT) to Harmonic Grammar (HG)
with respect to simulated annealing, a heuristic optimization algorithm.
First, a few notes on Smolensky’s ICS Architecture will bridge the gap
between connectionist HG and symbolic HG. Subsequently, the latter is
connected to OT via q-HG grammars, in which constraint Ci has weight
qi. We prove that q-HG converges to OT if q→ +∞, even if constraint
violations have no upper bound. This limit shall be referred to as the
strict domination limit. Finally we argue that q-HG in the strict domina-
tion limit shareswith OT a remarkable feature: simulated annealing does
not always converge to 100% precision, even if the algorithm is offered
ample time. Globally non-optimal local optima produced at slow pace
will be viewed as irregular forms.

There were three greengrocers in Sziget street. Kardos, the first
owner, put a sign in his window: “Best vegetables in town!”.
Then Kerekes, the owner of the second shop, raised the bid by
posting: “Best vegetables of the world!” The third owner, Kohn,
had a hard time. What should he do now? He finally decided to
write on his door: “Best vegetables of the street!”

“Errare humanum est”, said the hedgehog when he climbed down
the wire brush.

1. Do grammars count?

Well, we all are linguists, and so grammars do matter to us. And yet,
it has become common wisdom in our profession that “grammars don’t
count”. To quote Kornai (2008, 250): “the heavy emphasis on noncounting
languages originates in an apocryphal remark of John von Neumann: ‘The
brain does not use the language of mathematics’ ”.

K + K = 120 / p. 106 / May 3, 2019

106 Tamás Biró

This maxim has been used in several ways. Whether counting is le-
gitimate or mistaken in language description, whether languages count
segments, syllables or words (e.g., among many others, McCarthy 2002;
González 2005; Watanabe 2009; Graf 2017), has been a long debate that
shall not be our concern here. Our question is whether language models
should make use of counting. More precisely: what is the consequence of
the fact that Optimality Theory (Prince & Smolensky 1993; 2004) avoids
counting, whereas Harmonic Grammar (Smolensky & Legendre 2006)
does count?

Even within Optimality Theory, “to count or not to count” is a question
raised multiple times. Apropos constraint violations, we all know that the
violation level Ck(x) assigned by constraint Ck to candidate x is usually a
number of “stars”. Yet, some constraints are simply categorical, binary, with
range {0, 1} or {true, false}, {satisfies, violates}: the last syllable
of a word is either parsed into a foot or it is not, Wh-movement either has
taken place or has not, the meaning is either faithfully expressed in the
form or it is not, and so forth. Many other constraints are binary within
some “locus”, but the candidate itself is composed of several such “loci”, and
so they can be violated multiple times. These constraints count the number
of marked segments or disfavored foot types or unfaithful features in the
candidate. Some other constraints again may be violated to several degrees:
for instance, the larger the distance of the head foot to some word edge
(measured as the number of intervening syllables), the graver the violation
of this alignment constraint by the candidate. Finally, some constraints
can be gradually violated by several loci, and a non-trivial axiom of OT
is that these constraints simply sum up the violations by the loci. Which
of these constraints should and which should not be used is again a long
story (McCarthy 2002; 2003; Bíró 2003; Eisner 1997).

In standard OT, the counting by a constraint Ck is usually only a
technicality, which boils down to the question which of Ck(x) and Ck(y) is
greater (a more severe case of constraint violation). The specific numerical
values actually only matter in Harmonic Grammar. Thus we arrive at the
question that shall concern us here: is counting involved when constraints
are combined into a single architecture?

Thus, given is a set {C1, C2, . . . , Cn} of constraints. Of these con-
straints, both Harmonic Grammar (HG) and Optimality Theory (OT)
build up an objective function (target function) H(x) to be optimized.
While HG uses a weighted sum of the violations Ck(x) (refer to equation
(6) later), OT creates a vector, best known as the row corresponding to
candidate x in an OT tableau (cf. (9)). Both approaches postulate the

K + K = 120 / p. 107 / May 3, 2019

OT grammars don’t count, but make errors 107

output (e.g., surface form) SF(u) corresponding to input (e.g., underlying
form) u to be the most harmonic element of the candidate set Gen(u):

SF(u) = arg opt
x∈Gen(u)

H(x) (1)

In Harmonic Grammar, optimization is simply minimization in terms of
the arithmetic greater than relation. Whereas in OT, it is the lexicographic
order on a set of real-valued vectors: you compare the first components of
the two vectors (the violations of the highest ranked constraint); if they
are equal, then you proceed with comparing their second components; and
so forth (Eisner 2000; Jäger 2002; Prince 2002).

The output SF(u) can be conceived of as the grammatical form,
that is, the form predicted by the grammar, the model of human linguis-
tic competence (Newmeyer 1983). The next step is to find the candidate x
that optimizes the objective functionH(x), a procedure that has been com-
pared to linguistic performance (Smolensky & Legendre 2006; Biró 2006).

What procedure shall we use to find the optimal candidate? Similarly
to the third greengrocer in Sziget street, we shall optimize locally. But
as the hedgehog warns us, local optimization can go wrong. We discuss
simulated annealing, a probabilistic hill climbing algorithm that performs
local search, comparing its behavior with OT to its behavior with HG.

This article is structured as follows. Section 2 presents the link be-
tween connectionist Harmonic Grammar and symbolic Harmonic Gram-
mar, also summarizing Smolensky’s ICS Cognitive Architecture in passing.
Subsequently, section 3 stretches the connection to Optimality Theory by
introducing the concept of q-HG, a variant of Harmonic Grammar with
exponential weights. As a new mathematical result, we show that q-HG
converges to OT as the base of the exponents q grows infinite, even if no
upper bound exists on the number Ck(x) of violation marks. Then, sec-
tion 4 introduces simulated annealing, before section 5 elaborates on why
it works in most cases. In contrast to that, section 6 explains the main
message of this paper: simulated annealing can fail in the strict domina-
tion limit (q → +∞). This point is illustrated by computer experiments
in section 7, before drawing the conclusions in section 8.

2. From connectionist HG to symbolic HG

In order to understand why the optimization technique called simulated
annealing is relevant for Optimality Theory, let us first recapitulate the
connectionist idea behind OT. This section can also be read as an intro-

K + K = 120 / p. 108 / May 3, 2019

108 Tamás Biró

Figure 1: A Boltzmann machine with twelve nodes, an input layer and an output
layer

duction to Paul Smolensky’s Integrated Connectionist/Symbolic Cognitive
Architecture (ICS) (Smolensky & Legendre 2006).

A Boltzmann machine (Fig. 1) is a set of N nodes
(
ai
)N
i=1

, each with
activation value ai, a real number. It also includes, for each i and j, the
connection strength Wij of the arc from node i to node j, a real number
again. Skipping some technical details often included in the literature on
Boltzmann machines, let the energy E of the Boltzmann machine – the
negative of the Harmony mentioned earlier and to be introduced soon –
be simply the following sum of multiplications, over the connections i to j:

E =

N∑
i,j=1

ai ·Wij · aj . (2)

In connectionist HG, a constraint Ck is a set of partial connection strengths:
some W k

ij for each arc (i, j) in the network (Fig. 2). If the weight of Ck is
wk, and there are n constraints, then the total connection strength for arc
(i, j) in the ensuing network is

Wij =
n∑

k=1

wk ·W k
ij . (3)

The notion of candidate in symbolic OT and HG, introduced in the pre-
vious section, corresponds to an activation pattern in connectionist HG.
Some of the nodes describe the input (e.g., underlying representation),
and are clamped (set) during computation. Some other nodes encode the
output by the end of the computation. The rest of the nodes are “hidden”.
They may correspond to hidden (or covert) information, not present either
in the input or in the output, but encoded in the candidate, as it plays
some role in linguistic theory: syllable structure (Soderstrom et al. 2006),

K + K = 120 / p. 109 / May 3, 2019

OT grammars don’t count, but make errors 109

C1: C2:

3 · C1: 3 · C1 + 2 · C2:

Figure 2: Examples of two constraints as partial connection strengths (upper
row), and their weighted sums (linear combinations) (lower row).
A missing arc means strength 0.

prosodic and syntactic parsing brackets, correspondence relations between
input and output (cf. McCarthy & Prince 1995), intermediate levels of
representations (e.g., Boersma 2011), and so forth.

During computation, the Boltzmann machine moves toward a (locally)
minimal energy state, with its input nodes clamped and its output nodes
eventually encoding the optimal output. The candidate set Gen(u) for
input u is thus formed by the possible states of the network, with its input
nodes fixed to encode u.

From (2) and (3), we get the energy of a connectionist HG model in
state A =

(
ai
)N
i=1

:

E[A] =

N∑
i,j=1

ai ·Wij · aj =

N∑
i,j=1

ai ·
n∑

k=1

wk ·W k
ij · aj =

n∑
k=1

wk ·
N∑

i,j=1

ai ·W k
ij · aj . (4)

We may now identify Ck[A] =
∑N

i,j=1 ai ·W k
ij · aj as the violation of con-

straint Ck by the activation pattern (i.e., candidate) A =
(
ai
)N
i=1

. In turn,

E[A] =

n∑
k=1

wk · Ck[A]. (5)

This is the equation that creates the bridge between connectionist HG and
symbolic HG.

K + K = 120 / p. 110 / May 3, 2019

110 Tamás Biró

For instance, the violation of constraint C1 in Fig. 2 is a1 · a5 + 0.5 ·
a5 · a6 + 1.5 · a2 · a6 + . . . Similarly, the violation of C2 turns to be −0.5 ·
a1 · a5 − a5 · a6 + a1 · a6 + 0.5 · a2 · a6 + . . . As a result, a connectionist
harmonic grammar with weights w1 = 3 and w2 = 2 corresponds to the
linear combination 2 · a1 · a5 − 0.5 · a5 · a6 + 2 · a1 · a6 + 5.5 · a2 · a6 + . . .

To summarize, a candidate x in symbolic HG corresponds to an ac-
tivation pattern A of the Boltzmann network. A constraint Ck is a set
of partial connection strengths W k

ij , and its violation Ck(x) by candidate
x turns into the sum

∑N
i,j=1 ai ·W k

ij · aj . Hereby, the energy E[A] of the
Boltzmann network will map to the (negative) Harmony H(x) of the HG
grammar. Boltzmann machines, as a connectionist technique, minimize
their energy, and so symbolic HG linguistic models also ought to optimize
their harmony.

3. From symbolic HG to symbolic OT, via q-HG

To summarize, we have derived the connection between minimizing the
energy E[A] in connectionist HG and maximizing the harmony H(x) in
symbolic HG. The opposite directions of optimization can be taken care
of with a negative sign, and it has historical reasons. To tell the truth,
I personally prefer the minimization perspective even in OT, since the
best candidate is the one that violates the constraints the least. We will
nevertheless have to introduce that negative sign in order to maintain the
view according to which the best candidate maximizes its harmony, given
constraint weights wk:

H(x) = −
n∑

k=1

wk · Ck(x) (6)

Now we proceed further towards Optimality Theory. It has become custom-
ary, especially in the literature on learning, to assign a real-valued rank rk
to each constraint Ck (Boersma 1997; Boersma & Hayes 2001). The higher
its rank, the higher the constraint will be ranked in OT. The most direct
connection between weights and ranks is identifying them: wk = rk (“linear
HG”). A less self-evident connection, exponential HG (Boersma & Pater
2008), has however been more frequently employed: wk = exp(rk), with
some base larger than 1 (such as 2 or 10 or e = 2.71 . . .). Exponentiat-
ing the ranks has the advantage that learning will never produce negative
weights (Pater 2009), as well as that it also makes learning more efficient
(cf. the inefficiency of learning linear HG, as demonstrated by Magri 2016).

K + K = 120 / p. 111 / May 3, 2019

OT grammars don’t count, but make errors 111

Earlier, I have introduced an approach called q-Harmonic Grammar in
which wk = qrk (Biró 2009). Having the value of q > 1 fixed, we may define
a 2-HG grammar, a 10-HG grammar or a 1.23-HG grammar, if q = 2 or 10
or 1.23, respectively. But we can also change the value of q. The difference
between exponential HG and q-HG is a question of perspective: the former
sets the base of exponentiation, and considers it merely as a technical
detail, whereas the latter views it as an interesting tunable parameter.

On the one hand, a change of the basis q from q1 to q2 is technically
equivalent to multiplying all ranks by the factor log q2

log q1 . On the other hand,
if the ranks are kept fixed, then increasing q is how we can get HG to turn
into OT: we are demonstrating momentarily that under certain conditions
an OT grammar and a q-HG grammar with the same constraint ranks
define the same language in the q → +∞ limit.

Parameter q becoming infinitely large will be called the strict domi-
nation limit. The motivation of the expression is that the key difference
between HG and OT is strict domination: if the two approaches predict
different language typologies, then it is because HG, but not standard
OT, allows counting cumulativity and ganging-up cumulativity (Jäger &
Rosenbach 2006).

Table 1: Counting cumulativity: [y] is more harmonic than [x] if q = 3

/u/ C2 C1 3-HG 5-HG OT
r2 = 2 r1 = 1

q = 3 w2 = 32 = 9 w1 = 31 = 3

q = 5 w2 = 52 = 25 w1 = 51 = 5

[x] ∗∗∗∗ −12 F−20 F
[y] ∗ F−9 −25

Table 2: Ganging-up cumulativity: [y] is more harmonic than [x] if q = 3

/u/ C3 C2 C1 3-HG 5-HG OT
r3 = 3 r2 = 2 r1 = 1

q = 3 w3 = 27 w2 = 9 w1 = 3

q = 5 w3 = 125 w2 = 25 w1 = 5

[x] ∗∗ ∗∗∗∗ −30 F−70 F
[y] ∗ F−27 −125

Tableaux 1 and 2 illustrate the point. The best candidates, shown by the
pointing hand, are calculated with respect to the hierarchy (C3 ≫)C2 ≫

K + K = 120 / p. 112 / May 3, 2019

112 Tamás Biró

C1 in OT; and as the weighted sum of the violations in q-HG, the weights
being wi = qri . In both tableaux, candidate [x] is more harmonic than
[y] for OT and 5-HG. However, for 3-HG, tableau 1 shows how multiple
violations of the lower ranked constraint C1 can turn the candidate [y]
more harmonic. Similarly, in tableau 2, the lower ranked two constraints,
C2 and C3, gang up: while neither of them alone could make [x] worse than
[y], taking them together results in [y] winning over [x].

In both cases, 5-HG behaves like OT, and any q-HG would do so if
q ≥ 5. It has been long known (Prince & Smolensky 2004, 236) that a
sufficient criterion for a harmonic grammar with an exponential weight
system to display OT-like behavior is that the base of the exponential
weights be not less than the highest amount of stars in a cell (which is 4 in
our example) plus 1. This is why 5-HG is equivalent to OT, but not 3-HG.
(For a reversed approach, refer to Prince 2002.)

Let us now formalize this observation. U shall be the set of underlying
forms – the domain of the universal Gen function – which is postulated
to be universal by the Richness of the Base principle (Prince & Smolen-
sky 2004, 225). Moreover, let us posit that our n constraints take non-
negative integer values: for k = 1, . . . , n, the constraint Ck is a mapping
from

∪
u∈U Gen(u) to N0. This last requirement will play a crucial role

in the proof to be presented. While it certainly applies to most linguis-
tic models in the OT and HG literature, it poses some limitations to the
generalizability of the framework.

Without loss of generality, we can assume that the indices of the
constraints reflect their ranking. Consequently, our OT grammar shall be

Cn ≫ Cn−1 ≫ . . .≫ C1 (7)

This OT grammar can be matched to the q-HG grammar with rk = k and
wk = qk (remember that q > 1). The point of interest is whether these two
grammars generate the same language. Put it differently, the following two
Harmony functions are compared:

Hq(x) = −
n∑

k=1

qk · Ck(x) (8)

HOT(x) =
(
− Cn(x),−Cn−1(x), . . . ,−C1(x)

)
(9)

Equation (1), reformulated here, defines a grammar for either kind of Har-
mony functions:

SF(u) = arg max
x∈Gen(u)

H(x) (10)

K + K = 120 / p. 113 / May 3, 2019

OT grammars don’t count, but make errors 113

(for all u ∈ U). Such a grammar maps an underlying form u to a surface
form s, if and only if H(s) ≽ H(x) for all x ∈ Gen(u). SF(u) is the
set of these optimal candidates. In the case of q-HG, the values of Hq

are compared using the arithmetic greater than or equal to relation ≥,
whereas in OT, the lexicographic order ≽lex compares the HOT vectors. In
the former case, the set of optimal candidates will be denoted as SFq(u),
and in the latter case, as SFOT(u).

We now prove a theorem that guarantees that the OT grammar (7)
and the corresponding q-HG grammar (8) map any u ∈ U to the same
surface form(s), if q is sufficiently large. This fact has been long known
(Prince & Smolensky 2004, 236), but only if the number of violations ad-
mitted by the constraints were limited. We now show that no such upper
limit is required, if the constraints take integer values.

Theorem 1. Given are non-negative integer constraints Cn, Cn−1, . . . , C1

(ordered by their indices) and a Generator function Gen. Then, for any
underlying form u ∈ U there exists some threshold q0 ≥ 1 such that for all
q > q0, SFOT(u) = SFq(u).

Proof. For any given u ∈ U , we shall construct such a q0. In this proof,
the symbols s, s1, s2 and x will always denote elements of Gen(u).

First, observe that if s1 ∈ SFOT(u) and s2 ∈ SFOT(u), then from the
definition of the optimal set SFOT(u), we obtain HOT(s1) ≽lex HOT(s2)
and HOT(s2) ≽lex HOT(s1); from which it follows that they share the
same violation profile. That is, they violate each constraint to the same
level: Ck(s1) = Ck(s2) for all k.

In turn, it is well-founded to introduce the threshold q0 as

q0 = 1 + max
{
Ck(s), Ck−1(s), . . . , C1(s)

}
for whichever s ∈ SFOT(u). Since the constraints are postulated to have
a non-negative range, q0 ≥ 1 follows. Now we have to show SFOT(u) =
SFq(u) to hold for all q > q0.

If s1 ∈ SFOT(u) and s2 ∈ SFOT(u), then they violate each constraint to
the same level, and so Hq(s1) = Hq(s2), for any q. In order to complete our
proof, it remains to be shown that if q > q0, s ∈ SFOT(u) and x /∈ SFOT(u),
then Hq(s) > Hq(x). Candidates that are suboptimal for HOT are also
suboptimal for Hq.

Since s ∈ SFOT(u) and x /∈ SFOT(u), the vector HOT(s) is strictly
lexicographically greater than the vector HOT(x). This means that there
exists some “fatal constraint” Cf such that for all k > f , Ck(s) = Ck(x),

K + K = 120 / p. 114 / May 3, 2019

114 Tamás Biró

and −Cf (s) > −Cf (x). Since our constraints take integer values, we con-
clude that Cf (s)− Cf (x) ≤ −1.

Moreover, observe that for any k, Ck(s)−Ck(x) < q−1. This inequality
holds because by the above definition of q0, Ck(s) ≤ q0−1 < q−1, whereas
by the non-negativity of all constraints, Ck(x) ≥ 0.

These two inequalities on the differences of the violations yield, for all
q > q0 ≥ 1,

Hq(x)−Hq(s) =
n∑

k=1

[
Ck(s)− Ck(x)

]
· qk =

=
[
Cf (s)− Cf (x)

]
· qf +

f−1∑
k=1

[
Ck(s)− Ck(x)

]
· qk <

< −1 · qf +

f−1∑
k=1

(q − 1) · qk = −qf + (q − 1) ·
f−1∑
k=1

qk =

= −qf + (q − 1) · q
f − q
q − 1

= −q < 0.

That is, Hq(s) > Hq(x) indeed holds. To summarize, for each u ∈ U , we
have proposed a q0 ≥ 1 such that for all q > q0, the elements of SFOT(u)
are equally harmonic in q-HG; but they are more harmonic with respect
to Hq than the candidates not in SFOT(u). Thus, OT and q-HG map u to
the same optimal subset SFq(u) = SFOT(u) ⊆ Gen(u).

Obviously, nothing requires that a single q0 work for all elements of
U ; rather q0 is dependent on u. But as q grows, more and more underlying
forms will be mapped to the same surface forms by OT and by q-HG. Let
q0(u) be some threshold q0 for u, such as the one constructed in the proof of
Theorem 1. Since U is most often a countable set, we can sort its elements
by q0(u). Let the q0(u) value of the kth element of U in this list be q0[k].
Now, if you wish your q-HG grammar to map at least k elements of U to
the same output as the corresponding OT grammar does, then you should
have q > q0[k].

As an example, remember tableaux 1 and 2. We have seen that q0 = 5
is a good threshold: for all q > q0 = 5, the q-HG grammar corresponding
to the OT grammar will yield the output that is also most harmonic in the
OT approach. But imagine now a different input, /u′/, whose OT winner
[x′] incurs 6 violations by constraint C1. This second input will require
q0(u′) = 7, a higher threshold. And yet, you can set q to 7.1, and your q-
HG grammar turns equivalent to OT for both inputs. And so forth. Even
if you do not have an a priori upper bound of the number of stars assigned

K + K = 120 / p. 115 / May 3, 2019

OT grammars don’t count, but make errors 115

by C1, and even if you do not want to restrict the input set arbitrarily, you
will know: whenever you are about to compute the most harmonic element
of a candidate set, you can have a value of q such that q-HG may be used
instead of OT.

If a language is the way it maps inputs (underlying forms) onto out-
puts (surface forms), then the functions (set of mappings) SFOT and SFq

are simply the languages generated by an OT grammar and by a q-HG
grammar, respectively. Alternatively, the Chomskyan E-languages would
be the ranges of SFOT and of SFq, respectively.

The theorem just proven can be reformulated as follows: the language
generated by q-HG converges to the language generated by OT, as q grows
infinitely large; that is,

Corollary 2.
lim

q→+∞
SFq = SFOT pointwise.

Here the pointwise convergence of a sequence of functions on U is under-
stood as follows: for any u ∈ U there exists some q0 such that for all
q > q0, SFq(u) = SFOT(u). The limit q → +∞ has been called the strict
domination limit (Biró 2009).

Before proceeding, a remark is in order. The proof crucially relied
on the constraints taking non-negative integer values. In the general case,
however, Corollary 2 might still hold, even if in a weaker sense.

Take the following HG and OT grammars: candidates are non-negative
real numbers (Gen(u) = R+

0), while the two constraints are C2(x) = (x−
1)2 and C1(x) = x. In OT, the single best candidate for the highest ranked
constraint C2 is x∗OT = 1. All other candidates incur more violations by C2,
and so C1 plays no role. In q-HG, however, Hq(x) = −q2 · (x− 1)2 − q · x,
which takes its maximum at x∗q = 2q−1

2q . For no real q will x∗q = x∗OT; and
so no q0 exists such that SFq(u) = SFOT(u) for all q > q0.

Observe, though, that limq→+∞ x∗q = x∗OT. In a weaker sense, Corol-
lary 2 still holds, at least for this specific example: for all u ∈ U and all
ϵ > 0, there exists some q0 such that for all q > q0, the distance of SFq(u)
and SFOT(u) is less than ϵ. Readers worried about the linguistic relevance
of this example should note that the factorial typology includes candidates
1 and 0, and so it can be seen as a model of how a continuous phonetic
feature maps to categorical phonology: it is either present or absent from
a language. And yet, for candidates that are symbols or objects without a
meaningful distance metric, it would be hard to formulate a similar con-
jecture of convergence.

K + K = 120 / p. 116 / May 3, 2019

116 Tamás Biró

4. Simulated annealing for symbolic Harmonic Grammars

Once we have defined how our grammars map an input (or underlying
form) onto an output (or surface form) as an optimum defined by eq. (1) or
eq. (10), in the second half of this paper we turn to the next question: how
to find this optimum? The Boltzmann machines underlying connectionist
HG immediately come with an answer: simulated annealing.

In the case of symbolic OT, the answer may be much less obvious,
and even ‘hard’. While most of our colleagues happily rely on their intu-
itions, Lauri Karttunen (2006) demonstrated “the insufficiency of paper-
and-pencil linguistics”, arguing for finite-state implementations of OT.
Finite-state OT, however, imposes requirements that are met by many, but
not all linguistic models (cf. e.g., Eisner 1997, Jäger 2002 and Bíró 2003,
and references therein). Further approaches include dynamic programing
(or chart parsing; Tesar & Smolensky 2000) and genetic algorithms (Turkel
1994; Pulleyblank & Turkel 2000). It used to be a consensus in the field
that the generation problem of OT is NP-hard in the size of the grammar
(e.g., Eisner 1997; 2000; Idsardi 2006a;b). This consensus was challenged
by András Kornai in two squibs (2006a;b) that probably made one of the
liveliest moments in the history of the Optimality List and the ROA Rut-
gers Optimality Archive (and see also Heinz et al. 2009).

Heuristic optimization algorithms, including simulated annealing and
genetic algorithms, have been successfully deployed to find an approxi-
mately good solution for NP-hard problems (Reeves 1995, pp. 6–11). While
they do not guarantee to always return the best solution, they do so rea-
sonably well, returning the optimum pretty often, and otherwise returning
a solution almost as good as the best one. Whether the generation problem
in OT is NP-hard, or it is not, two further arguments can also be given
for the use of heuristic optimization: similar trends in the cognitive sci-
ences in general, beyond linguistics (e.g., Gigerenzer et al. 1999), and the
very fact that our human speech production is also known to be prone to
errors. Hence our interest in “less perfect” approaches and the motivation
to employ simulated annealing for Optimality Theory (Bíró 2005a;b; Biró
2006).

Let me now summarize simulated annealing (in a way that is based
on Biró 2007). Equations (1) and (10) define Optimality Theory as an
optimisation problem. The task is to find the candidate x∗ that optimizes
H(x).

Many heuristic algorithms do not always find the (globally) optimal
candidate, but are simple and still efficient because they exploit the struc-

K + K = 120 / p. 117 / May 3, 2019

OT grammars don’t count, but make errors 117

ture of the search space, which is the candidate set in our case. This struc-
ture is realized by a neighborhood relation: for each candidate x there ex-
ists a set neighbors(x), the set of the neighbors of x. It is often supposed
that neighbors differ only minimally, whatever that means. The neighbor-
hood relation is usually symmetric, irreflexive and results in a connected
graph-like structure: any two candidates are connected by a finite chain
of neighbors. More details of this relation should depend on the specific
linguistic phenomenon under discussion.

The neighborhood structure – also called the topology – invites for a
random walk in the search space, that is, on the candidate set. This walk
can be conceived of as a series x0, x1, x2, . . . , xL of candidates. Candidate
xi, to be also referred to as the position of the random walker at time
i, must be either identical to, or a neighbor of the candidate xi−1, the
previous position of the random walker. Position x0 will be called the
initial position (xinit), and xL shall be the final position (xfinal) of the
random walk, whose length is L, the number of “steps”.

ALGORITHM Gradient Ascent: OT with restricted GEN
x := x_init;
repeat

x_prev := x;
x := most_harmonic_element({x_prev} U neighbors(x_prev));

until x = x_prev
return x # x is an approximation to the optimal solution

Figure 3: Gradient Ascent: iterated Optimality Theory with a restricted GEN
(Do-α)

ALGORITHM Randomized Gradient Ascent
x := x_init ;
repeat

Randomly select x' from the set neighbors(x);
if (x' not less harmonic than x) then x := x';

until stopping condition = true
return x # x is an approximation to the optimal solution

Figure 4: Randomized Gradient Ascent

A random walker, such as a hedgehog, will walk in a landscape. The land-
scape’s horizontal map is provided by the neighborhood structure, whereas

K + K = 120 / p. 118 / May 3, 2019

118 Tamás Biró

its vertical dimension is the objective function H to be optimized. The
hedgehog’s goal is to climb the highest point in this landscape.

The simplest algorithm, gradient ascent, comes in two flavors. The ver-
sion in Fig. 3 defines xi+1 as the best element of the set {xi}∪neighbors(xi).
The hedgehog walks as long as xi+1 differs from xi, and the algorithm is
deterministic for each xinit. This kind of optimization has been known in
Optimality Theory since 1993 (Prince & Smolensky 1993; 2004) as serial
evaluation (McCarthy 2007) or harmonic serialism (McCarthy 2010): xinit
is the underlying form, Do-α (a restricted version of Gen) creates the set
{x} ∪ neighbors(x), whereas the Eval module finds its best element in
each iteration.

The second version of gradient ascent is stochastic (Fig. 4). In step
i, the hedgehog chooses a random x′ ∈ neighbors(xi), using some pre-
defined probability distribution on this set (often a uniform distribution). If
neighbor x′ is not worse than xi, then the next element xi+1 of the random
walk will be x′; otherwise, xi+1 is xi. The stopping condition requires the
number of iterations to reach some sufficiently large value, or the average
improvement of the objective function in the last few steps to drop below
a threshold (usually zero). Then the algorithm returns the output xfinal,
which is likely to be a local optimum.
Simulated annealing (Fig. 5) plays with this second theme to increase the
hedgehog’s chances of finding the global optimum and avoid being trapped
in unwanted local optima. The idea is the same, but if x′ is worse than
xi, then there is still a chance to move to x′. Importantly, however, this
probability is reduced to 0, as the algorithm proceeds. (In some versions of
simulated annealing, which we ignore here, if x′ is better than xi, the chance
of moving to x′ is less than 1, with this probability gradually converging
to 1.)

The transition probability of moving to x′ depends on the objective
function H at points xi and x′, as well as on a parameter of the algorithm,
T > 0, called temperature for historical reasons (Metropolis et al. 1953;
Kirkpatrick et al. 1983; Černý 1985):

P (xi → x′|T) = e
H(x′)−H(xi)

T . (11)

(Note that usually an energy function E is minimized, and not a harmony
function H maximized, and therefore the standard formula also includes a
negative sign in the exponent.) If the randomly chosen neighbor x′ is less
harmonic than x (if H(x′) < H(x)), then a random number r is generated,
and we move to x′ if and only if r < P (xi → x′|T).

K + K = 120 / p. 119 / May 3, 2019

OT grammars don’t count, but make errors 119

ALGORITHM: Simulated Annealing
Parameters: x_init # initial state (often randomly chosen)

T_max # initial temperature > 0
alpha # temperature reduction function = cooling schedule

x := x_init ;
T := T_max ;
Repeat

Randomly select x' from the set neighbors(x);
Delta := H(x') - H(x) ;
if (Delta > 0) # neighbor is more harmonic than current position
then
x := x' ;

else
move to x' with transition probability P(Delta;T)=exp(Delta/T):
generate random r uniformly in range (0,1) ;
if (r < exp (Delta / T))

then x := x' ;
end-fi
end-fi
T := alpha(T) # decrease T according to cooling schedule

Until stopping condition = true
Return w # w is an approximation to the optimal solution

Figure 5: Maximizing a real-valued harmony function H(x) with simulated
annealing

Temperature T is gradually decreased following a cooling schedule,
a decreasing series of values for T , so that in step i, the value of the
temperature is Ti:

Tmax = T0 > T1 > T2 > . . . > Ti > . . . > TL = Tmin > but close to 0. (12)

Some allow the same Ti value to be re-employed a finite number of times
rep, independent of (Reeves 1995, 26), or dependent on (Henderson et al.
2003) Ti.

As the temperature T decreases, the exponent in (11) becomes an
increasingly low negative number, and the transition probability P (xi →
x′|T) converges to zero. With very low temperatures, the hedgehog would
not move towards lower harmony anymore.

The final position of the random walker will be returned as the output
of simulated annealing. It is a stochastic algorithm without the guarantee
of always finding the global optimum. In fact, the hedgehog may be stuck

K + K = 120 / p. 120 / May 3, 2019

120 Tamás Biró

in a local optimum, having climbed a hill that is not the highest in the
landscape, but the temperature being too low already for the hedgehog
to take a counter-optimal step. The probability of returning the global
optimum will be referred to as the precision of the algorithm.

An important fact about simulated annealing is that precision can be
made to converge to 1 as the number of iterations L grows (Reeves 1995;
Henderson et al. 2003). The next section illustrates why this happens so.
Smolensky & Legendre (2006) repeatedly refer to this fact as an advan-
tage of their proposal: if the language model is given ample time, it will
almost certainly find the most harmonic, that is, the grammatical form.
(Note, though, that both the formal analysis and the practice of simulated
annealing know of cases that require very long running times; cf. Reeves
1995, 63.) Biró (2006) takes a different approach: the language model un-
able to find the grammatical form makes a performance error, similarly to
the human brain. Moreover, if the algorithm is given less time, it makes
more errors, like a fast speaking human. Speed can be traded for precision,
and fast speech can be modeled with simulated annealing (Bíró 2005b).

So far, we have only discussed simulated annealing with a real-valued
harmony function. However, I have earlier proposed a way to adopt sim-
ulated annealing (Fig. 5) to OT; in particular, I had to adapt the expo-
nential expression in (11) to the non-real valued objective function in (9)
(Bíró 2005a;b; Biró 2006). While I have presented various mathematical
arguments that lead to the same Simulated Annealing for Optimality The-
ory (SA-OT) Algorithm (Biró 2006, chapters 2 and 3; and a different train
of thought in Biró 2013 that could also be applied to SA-OT), critics may
still argue that the SA-OT Algorithm is removed from “real” simulated
annealing.

Figure 6: V landscape, with three candidates in a row. [B] in the center is worse
than the two candidates on the peripheries. [A] is the global optimum,
while [C] is locally optimal.

K + K = 120 / p. 121 / May 3, 2019

OT grammars don’t count, but make errors 121

Table 3: A possible tableau for the asymetrical V shaped landscape. Note symbol
∼ marking the local optimum.

C2 C1

F [A]
[B] ∗

∼ [C] ∗

In particular, SA-OT lacks the above mentioned property of simulated an-
nealing: in some cases increasing the number of iterations did not improve
the precision of the algorithm (refer to Biró 2006, sections 2.3.2 and 6.4, as
well as Biró 2009). It has been argued that the reason is strict domination.
Look at the landscape in Fig. 6 with tableau 3. This toy grammar includes
two local optima separated by the suboptimal candidate [B]. [A] is the
global optimum, better than [C] due to low ranked constraint C1. How-
ever, in simulated annealing, non-adjacent candidates are not compared
directly, and their frequencies in production emerge as a consequence of
the landscape. (This is a significant difference between SA-OT and Maxi-
mum Entropy OT, cf. Goldwater & Johnson 2003.) Both [A] and [C] defeat
[B] by the highly ranked constraint C2, and strict domination requires that
lower ranked constraints do not play any role. Consequently, as shown in
Biró (2006, section 2.3.2), SA-OT will return both [A] and [C] with a
probability of 50%, independently of the speed of the algorithm.

Without entering further details of the SA-OT Algorithm, the main
thrust of the current paper is to explain that this non-convergence property
is intrinsic to Optimality Theory: it appears not only in the SA-OT Al-
gorithm, which adopts strict domination a priori, but also in the strict
domination limit of applying simulated annealing to symbolic HG. In
other words, strict domination grammars, which practically do not count,
will make errors, even if ample time is available for them to perform
computations.

5. Why does simulated annealing work?

5.1. A simple model and its dynamics

First, let us try to understand why standard simulated annealing is suc-
cessful as an optimization algorithm: why its precision converges to 100%
if the length of the random walk is increased. The key will be that in a

K + K = 120 / p. 122 / May 3, 2019

122 Tamás Biró

certain phase of the algorithm (the “second phase”) hedgehogs can escape
local optima and be attracted to the global optimum.

Let us return to the simplest search space with a global optimum and
another local optimum (Fig. 6), which will be referred to henceforth as an
‘asymmetric V landscape’. Our randomly walking hedgehog in state [B] has
two neighbors to choose from. Suppose that both neighbors have a chance
of 0.5 to be picked. Then, either [A] or [C] is chosen, and the hedgehog
will move there with a transition probability P (B → A,C|T) = 1, because
H(B) is lower than bothH(A) andH(C). If the random walker is, however,
in state [A] or [C], the only neighbor has a reduced probability of being
moved to. Following eq. (11), the chances are:

pA(T) := P (A→ B|T) = e
H(B)−H(A)

T

pC(T) := P (C → B|T) = e
H(B)−H(C)

T (13)

Since H(A) > H(C), we can easily see that pA(T) < pC(T) at any time,
at any temperature T . As a side remark, this inequality does not hold in
SA-OT in the case presented by tableau 3, and that is why the global
optimum [A] is not able to attract the random walker away from the other
local optimum. Hence, the 50% precision of SA-OT.

Now suppose that many hedgehogs walk simultaneously. The average
number of hedgehogs moving from state x to a neighboring state x′ in
some iteration of the algorithm is the product of the number of hedgehogs
in state x, the probability of choosing neighbor x′ when at x, and the
transition probability P (x→ x′|T). At time step i, let ai, bi and ci denote
the number of random walkers in states [A], [B] and [C] respectively. By
using the above probabilities to calculate the flows from and into each
state, we obtain:

ai+1 = ai − ai · pA(Ti) +
1

2
bi

bi+1 = bi −
1

2
bi + ai · pA(Ti)−

1

2
bi + ci · pC(Ti)

ci+1 = ci − ci · pC(Ti) +
1

2
bi (14)

As expected, the number of hedgehogs ai+ bi+ ci = N is constant in time.
The precision of the algorithm is the probability that a random walker
finishes the walk in the globally optimal state [A], which is a∞/N . In what
follows we discuss the mechanisms that increase this precision.

K + K = 120 / p. 123 / May 3, 2019

OT grammars don’t count, but make errors 123

5.2. Extreme temperatures, and in between

Let us now consider two extreme cases. First, we suppose that temperature
is very low from time step i = 0 onwards, that is, T ≪ H(C)−H(B). Then,
according to (13), pA ≈ 0 and pC ≈ 0. In this case, the poor hedgehogs
are unable to escape from the local optima. The initial population b0 in
state [B] is distributed within one step between the two local optima, and
from this point onwards ai = a0 + 0.5b0 and ci = c0 + 0.5b0 for all i > 0.
In brief, the random walkers are frozen into the local optima at very low
temperatures.

In the second extreme case, temperature is very high: T ≫ H(A) −
H(B), resulting in pA ≈ 1 and pC ≈ 1, from time step i = 0 onwards.
Then the random walkers oscillate between the central and the peripheral
positions. Since the random walkers are equally distributed by position [B],
the whole system itself oscillates between two states. At odd time steps
a2i−1 = c2i−1 = 0.5b0 and b2i−1 = a0 + c0, whereas at even time steps
a2i = c2i = 0.5b1 = 0.5(a0 + c0) and b2i = b0 (i ≥ 1). Even if initially
a0 ̸= c0, a short period with extremely high temperatures will result in
ai = ci.

In the practice of simulated annealing, temperature T drops from a
very high to a very low value in many steps. In the first phase, T ≫
H(A) − H(B), while in the third phase T ≪ H(C) − H(B). In what I
shall call the second phase, temperature T is, informally speaking, “in the
magnitudes of” H(A)−H(B) and H(C)−H(B).

We have just seen that by the end of the first phase aI = cI . The
precision of the algorithm will be determined by aII−cII at the end of the
second phase, since in the third phase the states get frozen. If aII , bII and
cII denote the population in each of the states after the second and before
the third phase, then the precision of the algorithm is aII+0.5bII

N . Obviously,
here the phases are idealized, and in reality their boundaries are not so
clear. Yet, this idealization will contribute to our better understanding of
simulated annealing.

Next, observe that from equations (14):

ai+1 − ci+1 = (ai − ci) + (ci · pC(Ti)− ai · pA(Ti)) (15)

At the beginning of the second phase aI = cI , and therefore:

aI+1 − cI+1 = (aI − cI) + aI(pC(TI)− pA(TI)) (16)

K + K = 120 / p. 124 / May 3, 2019

124 Tamás Biró

Population ai and ci will begin to diverge if and only if there is a period
during the simulation when pA(Ti) ̸= pC(Ti). Otherwise, ai − ci remains
constantly zero.

For instance, if H(A) = H(C), then pA(Ti) = pC(Ti) at all times.
Therefore, independently of the original distributions, simulated annealing
will return both states [A] and [C] in 50% of the cases.

Even if H(A) > H(C), SA-OT offers no such period in Fig. 6 and
tableau 3: due to reasons related to strict domination, the transition prob-
abilities only depend on the fatal constraint (called the “highest uncanceled
violation mark” by Prince & Smolensky 1993; 2004), which does not distin-
guish between pA(Ti) and pC(Ti). On the contrary, when standard simu-
lated annealing is applied to symbolic harmonic grammar, eqs. (13) ensure
that pC(T) > pA(T). So ai − ci can turn positive at the beginning of the
second phase. The higher pC(Ti)− pA(Ti), the quicker the divergence be-
tween ai and ci. Moreover, the longer this period, the higher the precision
of the algorithm. These are the two mechanisms that contribute to the
success of simulated annealing, to its high precision.

By way of example, let us suppose that there is a period when H(A)−
H(B) ≫ T ≫ H(C) − H(B), that is when pA(T) ≈ 0 and pC(T) ≈ 1.
Then, state [A] acts as a trap for the hedgehogs, while it is still possible to
escape from [C]. A hedgehog will end up in state [C] only if whenever he is
in [B], he decides to move to [C], and not to [A], which has a probability of
0.5 each time. Provided that this period of the algorithm lasts 2k iterations,
our hedgehog ends up in [C] with a probability of 0.5k, and in [A] with a
probability of 1 − 0.5k. Consequently, the more iterations in this crucial
phase of the simulation, the higher the precision of the algorithm. The
precision converges to 100% as 2k grows.

This is the main idea behind simulated annealing, even if details are
more complicated, even for this simple landscape. For instance, after ai and
ci have diverged, ci·pC(Ti)−ai·pA(Ti) does not need to stay positive in (15),
and so ai − ci will not necessarily grow forever. If simulated annealing is
very (“infinitely”) slow, the system may reach an equilibrium in which
ai · pA(Ti) = ci · pC(Ti). That will be the topic of the next subsection.

To summarize, in the first and second phases, the hedgehogs can es-
cape local optima. In the second and third phases, the hedgehogs are at-
tracted by the global optimum. The longer the second phase (that is, the
more iterations are available in the second phase), the greater the chance
that a random walker will end up in the global optimum.

K + K = 120 / p. 125 / May 3, 2019

OT grammars don’t count, but make errors 125

5.3. Equilibrium of our system

Candidates [A], [B] and [C] have been called states, in which each of the
N hedgehogs can be found. As opposed to these states, the whole system
can be characterized with some macrostate: following the physical anal-
ogy, a macrostate of the whole system is a distribution (ai, bi, ci) of the
random walkers. Different random walkers can change their state, hence
the microstate of the whole system can change (a third concept); yet,
the macrostate does not alter as long as the overall distribution remains
the same.

A macrostate is an equilibrium state if it does not change in time, that
is, ai+1 = ai, bi+1 = bi and ci+1 = ci. Maybe no random walker moves:
the system is frozen, thus the microstate is also invariable. But it can very
much be the case that individual hedgehogs move from one state to another
one, but the distribution remains the same. From eqs. (14) and (15) we
conclude that the system is in equilibrium if and only if

ai · pA(T) = ci · pC(T)
bi = ai · pA(T) + ci · pC(T) (17)

If enough iterations are performed, then the system can converge to this
state. Decreasing the temperature very (“infinitely”) slowly allows the sys-
tem to stay in this macrostate of equilibrium. Then

ci
ai

=
pA
pC

= e
H(B)−H(A)

T
−H(B)−H(C)

T = e
H(C)−H(A)

T (18)

will steadily hold true. Gradually decreasing T to zero, results in ci
ai

also
converging to zero. The larger the difference H(A)−H(C), the faster this
convergence. In sum, an “infinitely slow” annealing (parameter T decreased
to zero in many-many steps) is characterized by a precision of 1: it will only
return the global optimum [A], and never the other local optimum, [C].

As a side note, solving the equation system (14) in the fixed point –
that is, for ai+1 = ai = a∗, bi+1 = bi = b∗ and ci+1 = ci = c∗ – with
N = a∗ + b∗ + c∗ leads us to

a∗(T) = N
pc

pc + 2pcpc + p+ a

b∗(T) = 2N
papc

pc + 2pcpc + p+ a

c∗(T) = N
pa

pc + 2pcpc + p+ a
(19)

K + K = 120 / p. 126 / May 3, 2019

126 Tamás Biró

In turn, inserting the transition probabilities (13) into (19) yields a Boltz-
mann distribution (in fact, a Boltzmann distribution in which [B] corre-
sponds to a degenerate state, that is, to two states that have the same
harmony and have been collapsed into one) as the state of equilibrium:

a∗(T) =
N

Z(T)
e

H(A)
T

b∗(T) = 2
N

Z(T)
e

H(B)
T

c∗(T) =
N

Z(T)
e

H(C)
T (20)

where N is the number of random walkers run in parallel, whereas

Z(T) = e
H(A)

T + 2 · e
H(B)

T + e
H(C)

T (21)

is called the partition function. As T → +0, the largest term (the first
one) will dominate the partition function, and therefore lim a∗(T) = N ,
but lim b∗(T) = 0 and lim c∗(T) = 0.

Observe that Maximum Entropy OT (Goldwater & Johnson 2003)
postulates a distribution similar to (20) (ignoring the factor 2 in b∗ and
Z), as if annealing stopped at a positive value of temperature T .

The next section derives the main result of this paper. It shows that
strict domination – postulated by Optimality Theory, and an asymptotic
case in q-HG – allows cases in which pC(T)− pA(T) is 1 in a crucial phase
of the simulation (hence, simulated annealing is maximally efficient); but
also cases in which pC(T)−pA(T) is constantly 0, and therefore simulated
annealing produces irregular forms.

6. Simulated annealing in the strict domination limit

6.1. Simulated annealing for q-HG

The present section contains the core message of this paper by asking what
the consequences are of the q → +∞ strict domination limit for simulated
annealing when it is applied to a q-HG grammar. We shall observe that
strict domination can lead to very efficient computation, but also to severe
errors.

Increasing q will increase the range of the objective function H(w).
It will also magnify the differences H(x′) − H(x) in the equation of the
transition probability (11).

K + K = 120 / p. 127 / May 3, 2019

OT grammars don’t count, but make errors 127

It follows that the cooling schedule must also be adapted. If the cooling
schedule remained the same, even the highest temperatures would become
very low compared to the differences in the objective function at high
q values. In the strict domination limit, the algorithm would therefore
miss its crucial first two phases, and start immediately with randomized
gradient descent (Fig. 4), instead of simulated annealing (Fig. 5).

Therefore, the cooling schedule should be made a decreasing series of
functions of q:

Tmax[q] = T0[q], T1[q], T2[q], . . . , Ti[q], . . . , TL[q] = Tmin[q] > 0 (22)

Additionally, a cooling schedule will satisfy two requirements: first, we
require that for some reasonable q0 and for any q > q0: Ti[q] > Ti+1[q].
Second, we also posit limq→+∞ Ti[q] = +∞ for any i.

More specifically, the cooling schedule should be such that the three
phases discussed in the previous section should be discernible. For any q,
the first values in the series should be “much greater” than any possible
difference in harmony of two neighboring candidates; which, based on (8),
is in the order of magnitude of qn. Similarly, the last values in the series
should be for any q “much smaller” than the smallest possible difference
in harmony, which is q, one violation difference of the lowest ranked con-
straint.

Biró (2006) suggested using Ti[q] = ti · qKi , where Ki was decreased
in an outer loop (from Kmax to Kmin, using Kstep), and for each Ki, ti
was decreased from tmax to tmin by tstep. For instance, the case Kmax = 4,
Kmin = 0, Kstep = 1, tmax = 3, tmin = 0.5 and tstep = 0.5 would look like:

3 · q4, 2.5 · q4, 2 · q4, . . . , 0.5 · q4, 3 · q3, . . . , 0.5 · q3, 3 · q2, . . . , 0.5 · q0 (23)

This kind of cooling schedule will be referred to as linear. Another option
is to diminish the temperature exponentially (Biró 2009):

Ti = (c · qn)
m−i
m (24)

where n is the number of constraints in the q-HG grammar (the exponent
of the highest ranked constraint). As one violation of the highest ranked
constraint contributes qn to the harmony function in (8), a large c (e.g.,
c = 100 – supposing that neighbors differ in only a few violations of con-
straint Cn) guarantees that initially the random walker will move freely:
for any x and x′, the transition probability P (x→ x′|T0) ≈ 1. At the same
time, parameter m determines the speed of the cooling schedule: a large
m diminishes the temperature only slowly. By the mth step, temperature

K + K = 120 / p. 128 / May 3, 2019

128 Tamás Biró

is reduced to Tm = 1. The smallest possible difference in harmony – cor-
responding to a single violation of the lowest ranked constraint C1 – is q.
Therefore, if q is large, then |H(x)−H(x′)| ≫ Tm, which means that after
m steps the system will have been frozen, the algorithm will have reached
its third phase.

6.2. The V landscape: the good case

In order to understand the behavior of simulated annealing applied to q-
Harmonic Grammar in the strict domination limit, let us return to the
V landscape (Fig. 6). Recall equation (15), repeated here:

ai+1 − ci+1 = (ai − ci) + (ci · pC(T)− ai · pA(T))
= (ai − ci)(1− pA(T)) + ci(pC(T)− pA(T)) (25)

Remember that at the beginning of the second phase ai = ci. The speed at
which the number of random walkers in states [A] and in [C] will diverge
during the second phase therefore depends on pC(T)−pA(T). If this value is
close to zero, then the divergence will be very slow, and only an extremely
large number of iterations can guarantee finding the globally optimal state
with a high probability. If, however, there is a phase in the simulation
(there is a value T) when pA(T) and pC(T) are very different, then the
algorithm will be efficient.

The conclusion thus has been that the efficiency of simulated annealing
depends crucially on the phase in which pA(T) is low and pC(T) is high.
Is there such a phase in the strict domination limit? We shall see that
in certain cases the strict domination limit makes simulated annealing
extremely efficient, but not in other cases.

Let us start with the good case. Consider the following tableau for the
V landscape (Fig. 6; α > β, and both are positive integers):

Cα Cβ

[A] ∗
[B] ∗ ∗
[C] ∗

(26)

Suppose that all other constraints do not distinguish between the three
candidates, and so they contribute the same constant term τ to the har-
mony. The harmony of the states are as follows: H(A) = τ − qβ, H(B) =
τ − qα − qβ, and H(C) = τ − qα. Consequently:

K + K = 120 / p. 129 / May 3, 2019

OT grammars don’t count, but make errors 129

pA(T) = P (A→ B|T) = e−
qα

T

pC(T) = P (C → B|T) = e−
qβ

T (27)

What we need is a cooling schedule with a second phase in which pC(T)−
pA(T) is large. A useful cooling schedule will start with Tmax[q]≫ qα and
end with Tmin[q]≪ qβ. By having a sufficient number of intervening steps,
there will be some Ti[q] = qγ where α > γ > β. Such a cooling schedule
can easily be constructed. In the case of a linear cooling schedule (23),
use tmax = tmin = 1, Kmax = α + 0.5 and Kstep = 1. Alternatively, use
Kstep < α− β, to make sure some Ti[q] = ti · qKi falls between qα and qβ.
If you prefer the exponential cooling schedule scheme (24), then m > n
will make the exponent of q take some value between any two adjacent
integers.

In turn, employing any of these cooling schedule schemes, let i be such
that Ti[q] = ti · qγ with α > γ > β. In this case,

lim
q→+∞

pA(Ti[q]) = lim
q→+∞

e
− qα

ti·qγ = 0

lim
q→+∞

pC(Ti[q]) = lim
q→+∞

e
− qβ

ti·qγ = 1 (28)

Consequently, pC(Ti[q])−pA(Ti[q]) converges to 1 in the strict domination
limit. For large q, at iteration i, our random walking hedgehog is free to
leave the locally optimal state [C], but is stuck in the global optimum [A].

This situation was already discussed in section 5.2, and we saw that
the probability of ending up in [A] could be made to converge to 1 by
increasing the number of steps in this phase of the algorithm. This can be
achieved, for instance, by reducing the value of the tstep parameter in a
linear cooling schedule (23), or by increasing m in an exponential cooling
schedule (24). If tstep < tmax−tmin

2k , or if m > 2kn
α−β

, then the algorithm will
spend at least 2k iterations such that qα > O(Ti[q]) > qβ, corresponding
to a precision of at least 1− 0.5k in the strict domination limit.

Strict domination in this case has proven to be an asset. Increasing q
also increases pC(Ti[q])−pA(Ti[q]), and so simulated annealing is expected
to work better.

6.3. The V landscape: the bad case

The situation will be very different with the following tableau (again, α >
β, and both are positive integers):

K + K = 120 / p. 130 / May 3, 2019

130 Tamás Biró

Cα Cβ

[A]
[B] * *
[C] *

(29)

This time, H(A) = τ +0, H(B) = τ − qα− qβ and H(C) = τ − qβ, whence

pA(T) = P (A→ B|T) = e−
qα+qβ

T

pC(T) = P (C → B|T) = e−
qα

T (30)

What is pC(T)− pA(T) in the strict domination limit?

lim
q→+∞

(pC(T)− pA(T)) = lim
q→+∞

e−
qα

T

(
1− e−

qβ

T

)
=

= lim
q→+∞

e−
qα

T · lim
q→+∞

(
1− e−

qβ

T

)
(31)

This limit is always zero. Namely, if T [q] < O(qα), that is, if lim qα

T [q] =∞,
then the first limit is zero and the second limit is less than or equal to 1.
If, on the other hand, T [q] > O(qβ) (that is, lim qβ

T [q] = 0), than the second
limit is zero and the first limit is less than or equal to 1.

Thus, when simulated annealing is applied to a V landscape with
tableau (29), the difference pC − pA stays zero in the strict domination
limit, at any temperature. The consequence of this fact for the dynamics
in eq. (25) is that the probability of a hedgehog to be in state [A] or in state
[C] will never diverge, yielding a 50% precision for all cooling schedules.

In summary, we have analyzed two variants of the asymmetric V land-
scape, displaying different behaviors in the strict domination limit. As the
parameter q of a q-HG grammar is gradually increased, so does the behav-
ior of simulated annealing approach the behavior of SA-OT. In the case of
tableau (26), the precision converges to 100% as the number of iterations
grows in the second phase; but it stays 50%, independently of the cooling
schedule, for tableau (29). Next, we confirm this analysis with computer
experiments.

K + K = 120 / p. 131 / May 3, 2019

OT grammars don’t count, but make errors 131

7. Experiments with the V landscape

It is always good practice to also support the conclusions of an analytical
discussion with computer experiments. Therefore, this section reports the
results of simulations run in a V landscape with three states (candidates),
as shown in Fig. 6. Can we confirm the above analyses of the grammars in
tableaux (26) and (29)?

For the sake of concreteness, the two constraints were assigned weights
q2 and q respectively (i.e., α = 2 and β = 1). Note that in both tableaux,
the relative harmony of the three candidates are independent of q (viz.,
Hq([A]) > Hq([C]) > Hq([B]) for all q), not displaying any kind of cumu-
lativity. Thus, the grammatical output is always [A].

The Java implementation of the simulated annealing algorithm in
Fig. 5 was run on the Atlasz HPC cluster of the ELTE university. For each
parameter combination discussed below, 106 random walks were launched,
so that we could measure the precision of the algorithm by counting the
frequency of returning the globally optimal candidate. With such a large
sample size, the standard error of the population proportion (i.e., the pre-
cision) is below 10−3. We also measured the distribution – mean and stan-
dard deviation – of the length of the random walk, that is, the number of
iterations until convergence.

The three candidates were used by turns as the initial position of
the random walk. The exponential cooling schedule followed (24), with
variable i (initially 0) increased by 1 in each iteration. Parameters c and n
were fixed: c = 100, to ensure a very high initial temperature, and n = 2,
corresponding to the two constraints in the grammar. A step by the random
walker increasing the violation of the higher ranked constraint decreases
the harmony by q2; when the temperature is initially T0 = c · q2, even such
a step has a probability of exp(−1/c) ≈ 1. After m steps, temperature
dropped to Tm = 1; this point in time can be roughly seen as the beginning
of the third phase, when temperature has become much lower than the
smallest possible difference in harmony, q. Increasing parameter c increases
how many of the first m iterations “kind-of” belong to the first phase,
whereas decreasing parameter c increases the number of iterations in the
“second phase”. Remember that the success of the algorithm depends on
the number of iterations in this second phase. In accordance with our
prediction, simulations confirm that choosing a smaller c slightly improves
the precision of the algorithm.

The stopping condition required the random walker not to move for
ℓ = 60 iterations. Recall that if the random walker is in position [B], it

K + K = 120 / p. 132 / May 3, 2019

132 Tamás Biró

will always move to one of its neighbors. It will not move if it is in a local
optimum, and the random number generated is higher than the transition
probability (11). For this to happen 60 times, we must be extremely un-
lucky, unless the transition probability is already extremely low, as the
consequence of a very low temperature. Reducing parameter ℓ to 40 or
20 will marginally decrease the precision of the algorithm and the aver-
age length of the random walk. Reducing it further to 10 will result in
a more significant loss in precision, accompanied by an average length of
the random walk diminished by a few steps. Indeed, given the very large
sample size, it is not unexpected that a few times the random number
generator will produce ten consecutive large values, stopping the algorithm
prematurely.

For each of the two grammars analyzed above, the “good case” and the
“bad case”, we report in details the effect of tuning the two most interesting
parameters: the base q, and m, the speed of simulated annealing. Tables 4
and 6 in the Appendix present the precision for each parameter combina-
tion. Given the sample size of 106 for this binary process (the output being
either “correct” or “incorrect”), the standard error of the sample proportion,
but also the error bar for the estimated proportion is below 0.1%.

Tables 5 and 7 present the speed of convergence: for each parame-
ter combination, the mean and standard deviation of the 106 simulation
lengths. Simulation length refers to the number of iterations until the ran-
dom walker got stuck in the global or another local optimum: the value
of the variable i in the cooling schedule (24) when the stopping condition
becomes true minus ℓ, the number of iterations the random walker has
been stuck here. Again due to the large sample size, the standard error
of the mean in each cell is smaller by three orders of magnitude than the
reported standard deviation.

The number of iterations is comparable to m, while it significantly
decreases as q increases. An empirical law of the form nr of iterations =
mχ · (ln q)ϕ approximates the observed data reasonably well, even though
a closer look at the tables reveals a more complex behavior. Fitting the
output of a separate set of experiments, we obtained χ = 0.954 and
ϕ = −0.351 for the “good case”, and χ = 0.945 and ϕ = −0.361 for the
“bad case” (the difference between the two cases is highly significant). The
conclusion is clear: simulated annealing with a given cooling schedule – in
our case, a specific value of the parameters c and m – becomes faster in
the strict domination limit.

Returning to precision, the plots in Fig. 7 present the results of yet an-
other set of simulations, each data point measured with 106 runs. Similarly

K + K = 120 / p. 133 / May 3, 2019

OT grammars don’t count, but make errors 133

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

parameter m

pr
ec

is
io

n

3 5 10 30 100 300 1000 5000

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

q = 1000
q = 100
q = 10
q = 2

q = 1.5
q = 1.1

● ●
● ●

●
● ●

●
●

●
●

●
●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

parameter m
3 5 10 30 100 300 1000 5000

● ●
● ●

●
● ●

●
●

●
●

●
●

●

q = 1.1
q = 1.5
q = 2
q = 10
q = 100
q = 1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

parameter q

pr
ec

is
io

n

1 3 10 30 100 300 1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

m = 5000
m = 1000
m = 100
m = 30
m = 10
m = 5

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

parameter q
1 3 10 30 100 300 1000

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

m = 5000
m = 1000
m = 100
m = 30
m = 10
m = 5

Figure 7: Precision of simulated annealing q-HG, as a function of parameters m
and q, for the two grammars discussed: (26) shown on the left panels,
and (29) on the right panels. For a given q, increasing m always im-
proves precision. However, as q grows from 1.1 to 1000 (on a logarithmic
scale), the two grammars display opposite behaviors.

to Tables 4 and 6, we can observe how for a given q, increasing the number
of iterations (increasing m) improves precision. This behavior is not at all
surprising, as a q-HG grammar is a real-valued optimization problem. From
the general convergence properties of “standard” simulated annealing, we
know that a sufficiently slow cooling schedule will produce high precision.
Mathematically speaking, I conjecture that for any q and all ϵ > 0 there
exists an m such that a specific q-HG grammar will yield a precision higher
than 1− ϵ.

K + K = 120 / p. 134 / May 3, 2019

134 Tamás Biró

Yet, this statement with a reversed scope is not necessarily true. Ob-
serve the plots as q grows. In the case of the “good grammar” on the left
panels, the strict domination limit corresponds to some precision between
50% and 100%, depending on m. It reminds us of the precision of SA-OT
with the same tableau, which also depends on the cooling schedule. A
large q paired with a large m easily yields a precision sufficiently close to
1. But such is not the case on the right panels, corresponding to the “bad
grammar”.

The formal analysis in the previous section and the current experi-
mental results both suggest that no cooling schedule is good enough for all
q-HG grammars based on the “bad case” tableau (29). In fact it seems that
for any cooling schedule – probably even beyond the exponential cooling
schedule scheme (24) – a sufficiently large q will yield a precision close
enough to the exactly 50% precision observed for the SA-OT Algorithm:

Conjecture 3. For any cooling schedule and for all ϵ > 0, there exists a
q0 > 1 such that for all q > q0 the precision of a q-HG grammar with (29)
is less than 0.5 + ϵ.

8. Summary: why is it human to err?

From the old joke with the three greengrocers we learn that optimizing
locally is more convenient for the human brain than optimizing globally.
But then, the hedgehog in the optimization procedure may climb the wrong
hill, producing an error. Therefore, we conclude that to err is human.

We have compared simulated annealing with a real-valued harmony
function, as it happens in connectionist and symbolic harmonic grammars,
to simulated annealing with strict domination. In the former case, one
can choose a sufficiently slow cooling schedule so that the precision of the
algorithm (the probability of returning the global optimum) be greater
than 1 − ϵ: the precision can be made to converge to 100%. This is not
the case with strict domination, however. With some grammars – i.e.,
constraint hierarchies, and candidate sets with neighborhood structures –
the precision of the Simulated Annealing for Optimality Theory Algorithm
(SA-OT) does not converge to 1. The same applies to q-HG: if q is large
enough, the precision can be far away from 100%.

Encouraged by Newmeyer (1983) and slightly diverging from standard
terminology, I suggest using the phrase grammatical form for linguistic
forms predicted by a grammar, such as the global optimum in OT-style
frameworks (1). A grammar is a model of the native speaker’s linguistic

K + K = 120 / p. 135 / May 3, 2019

OT grammars don’t count, but make errors 135

competence, “the speaker-hearer’s knowledge of [their] language” (Chomsky
1965); whereas the implementation of this grammar should mirror the
speaker’s linguistic performance (Smolensky & Legendre 2006; Biró 2006).

Jackendoff (2007, 27) explains Chomsky’s “knowledge” as “whatever is
in speaker’s heads that enables them to speak and understand their native
language(s)”. But what is in one’s head? A network of neurons. Hence, the
motivation to bridge connectionist harmonic grammars to symbolic ones,
and then to OT grammars, via q-HG. Now, should a grammar be an ad-
equate description of the speaker’s knowledge, the grammar will correctly
predict the forms produced and judged as acceptable – provided a perfect
implementation thereof.

In an imperfect implementation, however, errors occur: forms that are
not grammatical, but are nevertheless produced. These could be called
performance errors. Yet, this term has been employed differently, and so
let me suggest two alternatives. Some of the erroneous forms occur more
frequently if the production algorithm is run more quickly: these could be
seen as fast speech forms in a broad sense. Whereas other forms emerge
independently of the production speed, at least in OT and in the strict
domination limit of q-HG: these can be identified as irregular forms. An
example is progressive voice assimilation in some special cases in Dutch, a
language which otherwise displays regressive voice assimilation exclusively,
“as a rule” (Biró 2006).

The moral is that linguists need not struggle to have their grammars
encompass each and every form accepted by the native speaker. It might
be a more fruitful strategy to discount some forms, and to aim at a simpler
grammar. Then, the irregular forms contravening the general “rules” may
simply turn out to be errors made by the grammars that do not count.

Acknowledgements

This research was supported by a Marie Curie Career Integration Grant within the 7th
EU Framework Programme (grant no. 631599, “MeMoLI”). The computations were run on
the Atlasz HPC cluster of the Eötvös Loránd University. The very first draft of this paper
grew out from a discussion with Reinhard Blutner in 2007. The author acknowledges the
comments of an anonymous reviewer.

K + K = 120 / p. 136 / May 3, 2019

136 Tamás Biró

Appendix: Numerical results of the computer experiments

Table 4: Precision of the good case grammar (26)

m = 10 20 50 100 200 500 1000 2000 5000
q =1.1 0.518 0.527 0.541 0.555 0.568 0.589 0.612 0.642 0.682

1.2 0.534 0.550 0.578 0.601 0.627 0.665 0.705 0.753 0.815
1.5 0.572 0.607 0.665 0.711 0.758 0.822 0.881 0.933 0.975
2.0 0.612 0.669 0.757 0.821 0.877 0.937 0.975 0.994 0.999
3.0 0.659 0.739 0.850 0.918 0.962 0.991 0.999 1.000 1.000
5.0 0.705 0.803 0.920 0.972 0.994 1.000 1.000 1.000 1.000
10 0.751 0.860 0.965 0.994 1.000 1.000 1.000 1.000 1.000
20 0.780 0.894 0.983 0.999 1.000 1.000 1.000 1.000 1.000
50 0.810 0.922 0.993 1.000 1.000 1.000 1.000 1.000 1.000

100 0.826 0.934 0.995 1.000 1.000 1.000 1.000 1.000 1.000
200 0.836 0.942 0.997 1.000 1.000 1.000 1.000 1.000 1.000
500 0.842 0.950 0.998 1.000 1.000 1.000 1.000 1.000 1.000

1000 0.849 0.955 0.998 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Number of iterations in the good case grammar (26)
m = 10 20 50 100 200 500 1000 2000 5000

q =1.1 10.98 22.01 56.65 116.55 239.70 614.41 1232.45 2450.88 6046.75
±1.59 ±2.43 ±4.59 ±7.70 ±13.22 ±26.14 ±43.56 ±73.90 ±152.49

1.2 10.69 21.38 54.96 113.01 232.27 595.35 1194.37 2374.62 5854.86
±1.56 ±2.39 ±4.52 ±7.60 ±13.13 ±26.27 ±43.96 ±74.55 ±153.41

1.5 10.02 19.95 51.01 104.57 214.35 548.75 1099.99 2184.72 5379.69
±1.51 ±2.33 ±4.46 ±7.58 ±13.26 ±27.16 ±45.28 ±75.08 ±148.67

2.0 9.31 18.37 46.58 94.94 193.73 494.83 991.84 1970.70 4857.47
±1.49 ±2.32 ±4.50 ±7.70 ±13.32 ±26.78 ±42.77 ±67.90 ±132.46

3.0 8.50 16.56 41.36 83.56 169.50 432.51 869.48 1732.28 4277.83
±1.49 ±2.36 ±4.58 ±7.60 ±12.45 ±23.34 ±36.09 ±58.21 ±116.03

5.0 7.71 14.76 36.13 72.24 145.99 373.31 753.75 1505.55 3723.11
±1.51 ±2.42 ±4.53 ±7.00 ±10.68 ±19.48 ±31.07 ±51.08 ±102.70

10 6.92 12.92 30.77 60.94 122.96 315.16 638.67 1279.13 3168.20
±1.56 ±2.48 ±4.31 ±6.09 ±8.87 ±16.69 ±27.16 ±44.74 ±89.88

20 6.35 11.55 26.82 52.77 106.34 272.64 553.96 1111.90 2758.20
±1.61 ±2.52 ±4.06 ±5.41 ±7.86 ±14.86 ±24.46 ±40.24 ±80.46

50 5.76 10.18 23.00 44.91 90.26 231.19 470.90 947.91 2355.86
±1.65 ±2.53 ±3.78 ±4.86 ±7.00 ±13.14 ±21.77 ±35.78 ±70.99

100 5.43 9.40 20.83 40.42 81.00 207.30 422.72 852.58 2122.12
±1.67 ±2.54 ±3.65 ±4.58 ±6.51 ±12.12 ±20.16 ±33.13 ±65.46

200 5.18 8.77 19.07 36.77 73.50 187.85 383.30 774.45 1930.45
±1.69 ±2.55 ±3.54 ±4.39 ±6.14 ±11.30 ±18.83 ±30.92 ±60.88

500 4.91 8.09 17.21 32.89 65.49 167.04 341.04 690.54 1724.52
±1.72 ±2.55 ±3.44 ±4.17 ±5.75 ±10.38 ±17.31 ±28.44 ±55.81

1000 4.73 7.68 16.05 30.50 60.52 154.14 314.71 638.14 1595.72
±1.75 ±2.55 ±3.38 ±4.06 ±5.50 ±9.81 ±16.35 ±26.91 ±52.61

K + K = 120 / p. 137 / May 3, 2019

OT grammars don’t count, but make errors 137

Table 6: Precision of the bad case grammar (29)

m = 10 20 50 100 200 500 1000 2000 5000
q =1.1 0.621 0.679 0.762 0.824 0.877 0.938 0.976 0.994 0.999

1.2 0.611 0.666 0.745 0.806 0.858 0.922 0.966 0.990 0.999
1.5 0.589 0.634 0.704 0.760 0.811 0.878 0.931 0.971 0.993
2.0 0.567 0.601 0.658 0.706 0.752 0.814 0.871 0.927 0.972
3.0 0.544 0.568 0.608 0.642 0.678 0.728 0.778 0.836 0.903
5.0 0.526 0.539 0.565 0.587 0.611 0.644 0.678 0.722 0.785
10 0.513 0.518 0.532 0.542 0.555 0.574 0.591 0.614 0.653
20 0.506 0.509 0.514 0.520 0.527 0.536 0.545 0.557 0.576
50 0.502 0.504 0.506 0.508 0.510 0.513 0.517 0.522 0.529

100 0.500 0.502 0.502 0.504 0.505 0.507 0.508 0.511 0.514
200 0.500 0.500 0.501 0.502 0.502 0.503 0.504 0.506 0.508
500 0.501 0.500 0.500 0.502 0.501 0.501 0.502 0.502 0.503

1000 0.500 0.500 0.500 0.501 0.501 0.500 0.500 0.501 0.502

Table 7: Number of iterations in the bad case grammar (29)

m = 10 20 50 100 200 500 1000 2000 5000
q =1.1 10.14 20.22 51.71 105.81 216.63 552.39 1103.37 2186.02 5373.92

±1.69 ±2.68 ±5.26 ±9.03 ±15.74 ±31.23 ±49.89 ±80.05 ±157.94
1.2 9.85 19.61 50.16 102.73 210.45 537.24 1073.91 2128.33 5232.02

±1.64 ±2.59 ±5.06 ±8.70 ±15.16 ±30.37 ±48.89 ±78.65 ±154.65
1.5 9.16 18.21 46.57 95.50 195.92 501.70 1005.05 1993.59 4901.74

±1.54 ±2.39 ±4.59 ±7.86 ±13.76 ±28.10 ±46.17 ±75.06 ±147.26
2.0 8.41 16.66 42.58 87.41 179.55 461.50 927.14 1842.21 4533.82

±1.43 ±2.19 ±4.13 ±7.01 ±12.19 ±25.14 ±42.06 ±69.73 ±137.79
3.0 7.56 14.86 37.90 77.84 160.10 413.03 833.04 1659.85 4092.47

±1.32 ±1.98 ±3.67 ±6.12 ±10.56 ±21.79 ±36.52 ±61.44 ±123.89
5.0 6.70 13.07 33.20 68.14 140.28 362.96 734.92 1468.62 3629.50

±1.21 ±1.80 ±3.27 ±5.39 ±9.17 ±18.78 ±31.33 ±52.62 ±107.00
10 5.83 11.22 28.32 58.05 119.51 309.87 629.85 1262.57 3128.02

±1.11 ±1.62 ±2.90 ±4.73 ±7.94 ±16.23 ±26.94 ±44.85 ±90.77
20 5.17 9.83 24.63 50.42 103.75 269.27 548.93 1103.20 2738.12

±1.06 ±1.50 ±2.63 ±4.26 ±7.10 ±14.46 ±24.16 ±40.01 ±80.23
50 4.50 8.45 20.98 42.85 88.11 228.78 467.81 943.04 2345.53

±0.96 ±1.37 ±2.37 ±3.80 ±6.29 ±12.75 ±21.47 ±35.44 ±70.64
100 4.12 7.65 18.86 38.43 78.99 205.15 420.16 848.85 2114.38

±0.88 ±1.29 ±2.22 ±3.52 ±5.81 ±11.74 ±19.87 ±32.77 ±65.13
200 3.84 7.00 17.13 34.83 71.53 185.80 381.02 771.42 1924.41

±0.84 ±1.23 ±2.09 ±3.30 ±5.41 ±10.88 ±18.51 ±30.52 ±60.45
500 3.54 6.30 15.28 30.98 63.56 165.08 338.97 687.90 1719.52

±0.86 ±1.15 ±1.94 ±3.05 ±4.98 ±9.95 ±17.01 ±28.17 ±55.43
1000 3.33 5.88 14.13 28.58 58.59 152.17 312.68 635.62 1591.19

±0.86 ±1.11 ±1.85 ±2.89 ±4.71 ±9.38 ±16.07 ±26.62 ±52.31

K + K = 120 / p. 138 / May 3, 2019

138 Tamás Biró

References

Bíró, T. 2003. Quadratic alignment constraints and finite state Optimality Theory. In Pro-
ceedings of the Workshop on Finite-State Methods in Natural Language Processing
(FSMNLP), held within EACL-03, Budapest. 119–126. Also: ROA-600.

Bíró, T. 2005a. How to define Simulated Annealing for Optimality Theory? In J. Rogers
(ed.) Proceedings of FG-MoL 2005: The 10th Conference on Formal Grammar and
The 9th Meeting on Mathematics of Language. Edinburgh: Center for the Study of
Language and Information. 49–60.

Bíró, T. 2005b. When the hothead speaks: Simulated Annealing Optimality Theory for
Dutch fast speech. In T. v. d. Wouden, M. Poß, H. Reckman and C. Cremers (eds.)
Computational Linguistics in the Netherlands 2004: Selected papers from the fifteenth
CLIN meeting. Utrecht: LOT Publications. 13–28.

Biró, T. 2006. Finding the right words: Implementing Optimality Theory with simulated
annealing. Doctoral dissertation. University of Groningen. ROA-896.

Biró, T. 2007. The benefits of errors: Learning an OT grammar with a structured candidate
set. In CACLA ’07: Proceedings of the Workshop on Cognitive Aspects of Compu-
tational Language Acquisition. Prague: Association for Computational Linguistics.
81–88.

Biró, T. 2009. Elephants and optimality again: SA-OT accounts for pronoun resolution
in child language. In B. Plank, E. Tjong Kim Sang and T. Van de Cruys (eds.)
Computational Linguistics in the Netherlands 2009. Groningen: LOT, no. 14 in LOT
Occasional Series, 9–24.

Biró, T. 2013. Towards a robuster interpretive parsing: Learning from overt forms in Op-
timality Theory. Journal of Logic, Language and Information 22. 139–172.

Boersma, P. 1997. How we learn variation, optionality, and probability. Proceedings of the
Institute of Phonetic Sciences, Amsterdam (IFA) 21. 43–58.

Boersma, P. 2011. A programme for bidirectional phonology and phonetics and their ac-
quisition and evolution. In A. Benz and J. Mattausch (eds.) Bidirectional Optimality
Theory. Amsterdam & Philadelphia: John Benjamins. 33–72.

Boersma, P. and B. Hayes. 2001. Empirical tests of the Gradual Learning Algorithm.
Linguistic Inquiry 32. 45–86.

Boersma, P. and J. Pater. 2008. Convergence properties of a gradual learning algorithm
for Harmonic Grammar. ROA-970.

Černý, V. 1985. Thermodynamical approach to the travelling salesman problem. Journal
of Optimization Theory and Applications 45. 41–51.

Chomsky, N. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.
Eisner, J. 1997. Efficient generation in Primitive Optimality Theory. In Proceedings of the

35th Annual Meeting of the Association for Computational Linguistics (ACL-1997)
and 8th EACL. Madrid, 313–320. Also: ROA-206.

Eisner, J. 2000. Easy and hard constraint ranking in Optimality Theory: Algorithms and
complexity. In J. Eisner, L. Karttunen and A. Thériault (eds.) Finite-state phonology:
Proc. of the 5th SIGPHON workshop. Luxembourg, 22–33.

Gigerenzer, G., P. M. Todd and the ABC Research Group. 1999. Simple heuristics that
make us smart. Oxford: Oxford University Press.

K + K = 120 / p. 139 / May 3, 2019

OT grammars don’t count, but make errors 139

Goldwater, S. and M. Johnson. 2003. Learning OT constraint rankings using a maximum
entropy model. In J. Spenader, A. Eriksson and O. Dahl (eds.) Proceedings of the
Stockholm workshop on Variation within Optimality Theory. Stockholm: Stockholm
University. 111–120.

González, C. 2005. Segmental alternations in Yaminahua. In Proc. 24th West Coast Con-
ference in Formal Linguistics, Simon Fraser University, Vancouver, Canada.

Graf, T. 2017. The power of locality domains in phonology. Phonology 34. 1–21.
Heinz, J., G. M. Kobele and J. Riggle. 2009. Evaluating the complexity of Optimality

Theory. Linguistic Inquiry 40. 277–288.
Henderson, D., S. H. Jacobson and A. W. Johnson. 2003. The theory and practice of

simulated annealing. In F. Glover and G. A. Kochenberger (eds.) Handbook of meta-
heuristics. New York: Kluwer. 287–319.

Idsardi, W. J. 2006a. Misplaced optimism. ROA-840.
Idsardi, W. J. 2006b. A simple proof that Optimality Theory is computationally in-

tractable. Linguistic Inquiry 37. 271–275.
Jackendoff, R. 2007. Language, consciousness, culture: Essays on mental structure. Cam-

bridge, MA: MIT Press.
Jäger, G. 2002. Some notes on the formal properties of bidirectional Optimality Theory.

Journal of Logic, Language and Information 11. 427–451.
Jäger, G. and A. Rosenbach. 2006. The winner takes it all – almost: Cumulativity in

grammatical variation. Linguistics 44. 937–971.
Karttunen, L. 2006. The insufficiency of paper-and-pencil linguistics: The case of Finnish

prosody. In R. M. Kaplan, M. Butt, M. Dalrymple and T. H. King (eds.) Intelligent
linguistic architectures. Stanford: CSLI. 287–300.

Kirkpatrick, S., C. D. Gelatt Jr. and M. P. Vecchi. 1983. Optimization by simulated an-
nealing. Science 220. 671–680.

Kornai, A. 2006a. Guarded optimalism. ROA-841.
Kornai, A. 2006b. Is OT NP-hard? ROA-838.
Kornai, A. 2008. Mathematical linguistics. London: Springer.
Magri, G. 2016. Error-driven learning in Optimality Theory and Harmonic Grammar: A

comparison. Phonology 33. 493–532.
McCarthy, J. J. 2002. Against gradience. ROA-510.
McCarthy, J. J. 2003. OT constraints are categorical. Phonology 20. 75–138.
McCarthy, J. J. 2007. Restraint of analysis. In S. Blaho, P. Bye and M. Krämer (eds.)

Freedom of analysis? Berlin & New York: Mouton de Gruyter. 203–231.
McCarthy, J. J. 2010. An introduction to Harmonic Serialism. Language and Linguistics

Compass 4. 1001–1018.
McCarthy, J. J. and A. Prince. 1995. Faithfulness and reduplicative identity. In J. Beck-

man, L. W. Dickey and S. Urbanczyk (eds.) Papers in Optimailty Theory (University
of Massachussetts Occasional Papers in Linguistics 18). Amherst MA: Graduate Lin-
guistic Student Association. 249–384.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. 1953.
Equation of state calculation by fast computing machines. Journal of Chemical Phy-
sics 21. 1087–1092.

K + K = 120 / p. 140 / May 3, 2019

140 Tamás Biró

Newmeyer, F. 1983. Grammatical theory: Its limits and its possibilities. Chicago: University
of Chicago Press.

Pater, J. 2009. Weighted constraints in generative linguistics. Cognitive Science 33. 999–
1035.

Prince, A. 2002. Anything goes. ROA-536.
Prince, A. and P. Smolensky. 1993. Optimality theory: Constraint interaction in generative

grammar. Technical Report TR-2, Center for Cognitive Science, Rutgers University,
New Brunswick, N.J. and Technical Report CU-CS-697-93, Department of Computer
Science, University of Colorado, Boulder.

Prince, A. and P. Smolensky. 2004. Optimality Theory: Constraint interaction in Gener-
ative Grammar. Malden, MA & Oxford: Blackwell.

Pulleyblank, D. and W. J. Turkel. 2000. Learning phonology: Genetic algorithms and
Yoruba tongue-root harmony. In J. Dekkers, F. van der Leeuw and J. van De Wei-
jer (eds.) Optimality Theory: Phonology, syntax, and acquisition. Oxford: Oxford
University Press. 554–591.

Reeves, C. R. (ed.). 1995. Modern heuristic techniques for combinatorial problems. London:
McGraw-Hill.

Smolensky, P. and G. Legendre (eds.). 2006. The harmonic mind: From neural computation
to Optimality-Theoretic grammar. Cambridge, MA: MIT Press.

Soderstrom, M., D. W. Mathis and P. Smolensky. 2006. Abstract genomic encoding of
universal grammar in Optimality Theory. In Smolensky & Legendre (2006, 403–471).

Tesar, B. and P. Smolensky. 2000. Learnability in Optimality Theory. Cambridge, MA:
MIT Press.

Turkel, B. 1994. The acquisition of Optimality Theoretic systems. ROA-11.
Watanabe, S. 2009. Cultural and educational contributions to recent phonological changes

in Japanese. Doctoral dissertation. University of Arizona.

