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ABSTRACT

Vector representations ofwords, after decades of being at the periphery
of computer linguistics, are today widely used and researched. Accord-
ing to our terminology, representing aword involves a function assigning
a vector to each word from a finite set (vocabulary). In this paper we
investigate certain properties and limitations of word vectors with the
aim of improving them. We also present a novel method for learning not
vector, but matrix representation of words. The matrices are the re-
sult of gradient descent learning where the objective function rewards
the presence of a word in its neighboring context, similar to language
modeling.

1. Preliminaries

Vector representations of words, after decades of being at the periphery of
computer linguistics, are today widely used and researched.

According to our terminology, representing a word involves a function
which assigns a vector (in Rd) to every word from a finite set (vocabu-
lary) V .

v : V 7→ Rd

Early experiments focused on language modeling with neural architectures
(Xu & Rudnicky 2000 and Bengio et al. 2003) instead of n-gram models
(Kneser & Ney 1995). Referred to as distributional vector semantics, word
embeddings, or word vectors, they are now off-the-shelf tools in the field
of natural language processing (NLP) as of Mikolov et al. (2013a) and
Pennington et al. (2014). In case of these tools the function v is learned
from a corpus of monolingual, unlabeled, tokenized text. Their learning
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objective is similar to that of language modeling in the sense that they
maximize the likelihood of a word in its neighboring context.

Word vectors have proven useful in several applications: e.g., sentiment
analysis Socher et al. (2013), diachronic semantics change Hamilton et al.
(2016), zero-shot learning Dinu et al. (2015), neural dependency parsing
Dozat et al. (2017), and have also been scientifically investigated, e.g., in
Arora et al. (2016).

In this paper we investigate certain properties and limitations of word
vectors with the aim of improving them. We also present a novel method
for learning not vector, but matrix representations of words.

In sections 2 and 3 we provide some theoretical background. Section 4
presents the actual training objectives and models. Some numerical results
are provided in section 5.

2. Vector space structure

As seen in Mikolov et al. (2013b) and in Mikolov et al. (2013c) the linear
structure of trained vector models is undeniable, meaning that the semantic
structure is well represented by vector operations (linear combination and
dot product). From analogy questions (king-man+woman=queen) through
word similarity (angle of word vectors) and translation (vdog · T eng to ger =
vHund) to even some phrases (Chinese+river=Yangtze), linear vector space
structure seems to be empirically justified.

However, word vectors alone are not suitable for composing phrases
or sequences of words. In the example above Chinese+river is not the
same as ‘Chinese river’, at least not more so than ‘river Chinese’. Vector
addition is commutative, i.e. results are independent of the order of the
operands. This is why the vector addition itself is not suited for modeling
composition. The sum of words may be used to represent a phrase, but
tackling compositionality in general is a demanding task.

In Socher et al. (2013) parse trees were used to recursively process
phrases to create sentence representations. In Hill et al. (2016) the LSTM
architecture (Long Short-Term Memory, Hochreiter & Schmidhuber 1997)
was used to represent phrases. Learning compositional mechanisms to em-
bed entities of various length (words, phrases and sentences) are of central
interest to modern neural language processing.
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3. Algebras

The question arises naturally: which are the appropriate mathematical
structures (and composition rules) for a word embedding. The performance
of vector models suggests that vector space structure is a good starting
point. We also mentioned that beside the useful + operation, words tend
to require an additional operation, which composes them, and this com-
position is non-commutative. An algebra over the real field is a reasonable
choice Rudolph & Giesbrecht (2010).

C,+

V, ·

A

R, ∗

Figure 1: Algebras versus other structures

In Figure 1 the symbols C, V , R and A represent commutative groups,
vector spaces, rings, and algebras, respectively. Commutative groups have
a commutative addition operator (among others), vector spaces also have
dot product (and also scalar multiplication). A ring has addition and (non-
commutative) multiplication and an algebra is equipped with all of these
operations.

Note that in a group, in theory, one can compute elements like
Chinese+river or even subtract: Volga − Russia, but there is no way of
comparing the result to existing vocabulary entries. In a vector space, the
dot product can be used to measure similarities between elements, while
scalar multiplication allows us to calculate averages over certain elements.
In a ring, one can use the multiplication operator to model composition,
but it still lacks some properties of the vector space. Algebras meet all of
these requirements.

As a special case of algebras, matrix algebras consist of square matri-
ces, which are central to our investigations. Hence the name matrix em-
bedding: we want to train square matrices for each word in a vocabulary,
given a corpus of sentences.
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The algebra operations would look something like this:

green+ orange ≈ yellow-ish color or a team with these colors
green ∗ orange ≈ “green orange” like an unriped fruit

4. Learning matrices

Let V be our vocabulary: a finite set of symbols (words). Let C ⊂ V ∗ be
a collection of sentences, i.e., a corpus. We seek a map which assigns a
matrix to each word: M : V 7→ Rd×d. The size of matrices (d) is a model
parameter.

In order to train such a map we must impose an objective function
that measures how good a sentence is.

f : V ∗ 7→ R

We wish to find an appropriate f and optimize it with respect to M given
the corpus of sentences.

First we make some restrictions on the function f . Since we want to
model composition via matrix multiplication, f will be evaluated solely on
matrices, not on series of matrices. The score of a sentence should be the
score of the product of its words.

f(“the dog barks”) = f(Mthe ·Mdog ·Mbarks)

Note that compositionality takes place in the matrix product, the product
of three matrices is also a matrix, which is in the same vector space as its
components, although not necessarily in the vocabulary.

As in Pennington et al. (2014), we choose the scoring function to be
linear in its components. In the example above, it is linear in all of its
inputs: “the”, “dog” and “barks”.

f(Mthe ·Mdog ·Mbarks) ≈ logP(“the dog barks”)

In our work we choose f in a way similar to Rudolph & Giesbrecht (2010):

f(M) = v⊤ ·M · w
f(Mthe ·Mdog ·Mbarks) = v⊤ ·Mthe ·Mdog ·Mbarks · w

where v and w are column vectors, depending on the model which will be
specified later.



K + K = 120 / p. 145 / February 1, 2020

Languagemodeling with matrix embeddings 145

In the following subsections we introduce various models which imple-
ment the above ideas. All of them are suitable for optimization and indeed
train the embedding M but with different approaches. Numerical results
are presented in section 5.

4.1. Neural network model

The following model one does not make predictions about the probabilities
of full sentences, but only about probabilities of individual words appearing
in a given context. f shall be such that

f(contextbefore,word, contextafter) = P(word|context)∑
w∈V

f(contextbefore, w, contextafter) = 1.

Our architecture consists of an embedding layer M , a composition layer
using matrix dot product, and a readout layer that is a softmax function
over the vocabulary (given a fixed context).

1⊤

the dog

...

cat

has

...

︸︷︷︸
softmax over V

barks

1

Figure 2: Neural architecture of the matrix embedding model

In formulas, the objective is to minimize the entropy in every context, like:

− log exp
(
1⊤ ·Mthe ·Mdog ·Mbarks · 1

)∑
v∈V exp (1⊤ ·Mthe ·Mv ·Mbarks · 1)

→ min
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Or, more precisely, to maximize the following in M .

∑
(cb,w,ca)∈C

1⊤ ·

∏
b∈cb

Mb

 ·Mw ·

(∏
a∈ca

Ma

)
· 1

−
log
∑
v∈V

exp

1⊤ ·

∏
b∈cb

Mb

 ·Mv ·

(∏
a∈ca

Ma

)
· 1


where cb and ca are the context before and after the word w and the
products are ordered (non-commutative) matrix dot products. Contexts
are not required to be symmetric or of constant width, an empty product
yields the identity matrix, which can be used as a placeholder.

Note that this model does not assign probabilities to a whole sentence,
only to certain choices of words. The probability of a sentence is hard
to measure (see Kornai 2010), therefore we do not require the model to
calculate them.

4.2. Direct probabilistic model

We modify the above model in a way that the probability of every sen-
tence, phrase, and word is calculated directly. To obtain a full probabilistic
model we eliminate the softmax in the neural model, this is achieved by
constraining the matrices Mw to ensure they have a total probability of
1. Then the probability of the skip-gram “the »anything« barks” in the
corpus can be defined as ∑

w∈V
P(the w barks) =∑

w∈V
1⊤ ·Mthe ·Mw ·Mbarks · 1 =

P(the »anything« barks)

Since the above formula is linear in the middle matrix, we can calculate a
placeholder

M∗ :=
∑
w∈V

Mw

which does not change the probability of any sequence, no matter where
it is inserted. We also require that P(»anything«) = 1.

In this model matrices have an inevitable probabilistic interpretation.
We postulate the following constraints over M :
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• positivity of the elements: (Mw)i,j ≥ 0,

• right-stochastic sum:∑
w∈V

Mw is a right-stochastic matrix

i.e., its rows sum up to 1.

Under these conditions we can state the following:

• 1
d · 1

⊤ · (M∗)
n · 1 = 1 for n = 0, 1, 2 . . .

• If v ∈ R1×d has non-negative entries and sums up to 1, then v·M∗ also
has non-negative entries and sums up to 1 (i.e., keeps the probabilistic
row vectors).

• (M∗)
n is also a right-stochastic matrix, therefore∑
w1∈V

. . .
∑
wn∈V

1

d
1⊤Mw1 · · ·Mwn1 =

1

d
1⊤(M∗)

n1 = 1.

In this setup we can simply calculate the probability of any phrase or series
of words as

P(w1w2 . . . wn) =
1

d
1⊤Mw1Mw2 · · ·Mwn1.

This model can be trained on a weighted corpus, where every sentence
has an empirical probability p, in this case we must minimize the KL
divergence.

argmin
constraints on M

∑
c∈C

P(c)=p

p · log
(

p
1
d1

⊤
(∏

w∈cMw

)
1

)

If the corpus has no weights then we assume p ≡ 1.
The models so far were discriminative models.

4.3. Continuous WFSA

We can generalize weighted finite state automata by modifying the above
model, and we can optimize a continuous finite state automaton to fit a
weighted language. Similar connections between WFSAs and matrix rep-
resentations of words can be found in Asaadi & Rudolph (2016). We also
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introduce a learning algorithm to obtain our matrix embeddings, which in
turn can help us learn automata. As future work, these techniques may be
relevant in MDL (Minimum Description Length) learning of automata, as
in Kornai et al. (2013).

In the previous model the left-hand-side of the product can be con-
sidered as a context or state vector.

1

d
1⊤ ·Mthe ·Mdog︸ ︷︷ ︸

previous state

·Mbarks

︸ ︷︷ ︸
the state after ”barks”

·1

︸ ︷︷ ︸
probability of the whole outcome

In a way, the initial row vector 1
d1

⊤ is carried through the sentence and
we can obtain the probability of the current state by applying the column
vector 1.

Some modification is needed to justify this intuition and introduce
WFSA. We change the constraints on the embedding M , since the state of
an automaton should always sum up to 1. In the previous model the sum of
the earlier mentioned row vector decreases as the sentence spans. Let Mw

be a right-stochastic matrix for every word w ∈ V . Then the automaton
starts from the uniform state 1

d1
⊤ and every word acts as a transition on

this state.

v︸︷︷︸
state

action of w︷︸︸︷→ v ·Mw︸ ︷︷ ︸
new state

(1)

Some additional action is required, since the sum of every state is now
1 and we want to obtain meaningful probabilities. Let R ∈ Rd×|V | be a
matrix of non-negative entries which is responsible for emissions. In neural
network terminology we would call this the readout layer.

At every state v the columns of the matrix R determine which word
should follow.

P(next word is w| state v) = v · R•,w︸︷︷︸
wth column

(2)

Constraints on R and M are listed below.

• Mw is a right-stochastic matrix ∀w ∈ V .

• The rows of R sum up to 1 (and R has non-negative entries).
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Under these constraints an automaton arises:

• The states are 1, 2 . . . d.

• The initial state is uniform over the states: 1
d1

⊤.

• A word w acts as a transition function on the states as in (1).

• The outcomes (or emissions) at a given state (probabilistic row vec-
tor) v follow as in (2).

Finally, the probability of an emission sequence is the following product:

P(w1w2 . . . wn) =1⊤R•,w1︸ ︷︷ ︸
P(w1)

·1⊤Mw1R•,w2︸ ︷︷ ︸
P(w2|w1)

· · ·

1⊤
n−1∏
i=1

MwiR•,wn︸ ︷︷ ︸
P(wn|w1w2...wn−1)

Given a corpus or a weighted language, we can use the same objective
function as in the previous section and train M and R.

Note that, unlike in the previous two models, this model is not sen-
sitive to future words. The next emission and state does not depend on
following words. In contrast to the previous one, this is a generative model.

5. Results

Our experimental setup used the UMBC gigaword corpus (Han et al. 2013)
which was tokenized and split at sentence boundaries (punctuation part-
of-speech tag). The words were not converted into lowercase. It contains
about 3.338G words, the average length of a sentence is about 24 with stan-
dard deviation 15. For computational reasons, we excluded long sentences,
leaving 126.7M sentences to work with.

Words with frequency below 52 were replaced with a unique symbol
<UNK>, leaving roughly 100k types in the vocabulary (precisely 100147).

The implementation is not detailed herein, but the code is available.1
We encountered some serious numerical obstacles in case of model

4.1. We are not certain whether these numerical issues are caused by the

1 https://github.com/hlt-bme-hu/lm_me, see C++ code for neural model, python
(theano) implementation for the other two models.
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implementation or by the mathematical model, but the problem occurs if
the stochastic gradient descent encounters the same token several times
in the same sentence. Nevertheless, this problem did not occur in models
4.2 and 4.3. The first model differs from the others in several aspects: im-
plementation language, mathematical model, and also in gradient descent
strategy.

The performance of each model was measured on Google Analogy
questions Mikolov et al. (2013a), see evaluation code below.2 Cosine simi-
larity was used on the flattened matrices. The third model did not achieve
meaningful quality within reasonable computation time, here we only
present results of the second model.

The table below shows the number of correctly answered questions of
each trained model. Commutative means that the matrices were 100× 100
diagonal matrices; they form a commutative algebra. This can be consid-
ered as a fallback to word vectors. The dense models consist of 10 × 10
dense matrices.

Algebra Model Nr. correct

commutative 4.2 555
dense 4.2 81

The model 4.3 could answer 1 or 2 questions after equal amount of training.

6. Outlook

We introduced several techniques to train matrix embeddings of words
with various numerical efficiency and quality.

Training high quality embeddings and/or automata is our future in-
terest. There are some obvious obstacles in computation time, since the
training of a well tuned embedding usually takes days and matrix models
are expected to require even more computation time.

A possible computational enhancement is the use of structured, sparse
matrices, of which we train only certain elements, hence taking a sub-
algebra of the full matrix algebra. This hastens some calculations but keeps
the desired algebra properties intact. To this end, further studies of matrix
algebras and their sub-algebras are considered.

2 https://github.com/hlt-bme-hu/eval-embed
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Currently these experiments are in a preliminary state, but many im-
provements and applications are possible. As my supervisor, András Kor-
nai, has once described it, “Like socialism; appealing idea, but not working
in practice”.
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