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proof nets matrix method and proof nets, as applied to a variety of logics rang-
matrix method ing along the substructural hierarchy from classical all the way down to
Lambek calculus the nonassociative Lambek system. A novel treatment of proof nets for
substructural logic the latter is provided. Descriptions of proof nets and matrices are given

in a uniform notation based on sequents, so that the properties of the
schemes for the various logics can be easily compared.

1. Introduction

This paper provides a survey of two kinds of “compressed” proof schemes,
the matriz method and proof nets, as applied to a variety of logics ranging
along the substructural hierarchy (Restall 2000) from classical all the way
down to the nonassociative Lambek system. There appears to be a paucity
of survey literature that discusses proof nets for a variety of logics in a uni-
form notation, and even less which discusses matrix methods in relation to
proof nets. It is the author’s hope that this paper can provide in one source
a host of information and methodology for proof nets and matrices, which
could allow further research extending and using these techniques to be
more easily conducted. There are few new results presented here, but the
available literature provides treatments of various logics which are incom-
mensurate; we hope to rectify this situation by unifying the presentation
to a common framework.

Section 2 provides the necessary background, reviewing Gentzen-type
sequent calculi for a variety of logics. Section 3 introduces the approaches
to “proof compression” which are the main subject of the paper. Section
4 presents the matrix method, which works for both classical and linear
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logic, in some detail. As background, we also rehearse Smullyan’s “unify-
ing notation” (Smullyan 1963) of signed formulae which is central to the
present paper. Section 5 describes proof nets for a variety of logics, begin-
ning with the canonical case of multiplicative linear logic (Girard 1987).
The proof nets are defined in a two-sided framework that can be directly
applied to two-sided sequents, so that proof nets for the various logics can
be readily compared. From here it is possible to go both up and down
the substructural hierarchy; after also considering proof nets for classical
logic, two versions of the Lambek calculus are treated. It is observed how
the Lambek systems, with their increasingly rigid structural requirements
on the layout of the formulae in a sequent, require more strictly geometri-
cal conditions on correct proof nets. The nonassociative Lambek calculus
is here provided with a two-sided proof net system and a geometric cor-
rectness condition for the first time. The last sections of the paper briefly
discuss complexity of proof procedures and the general problem of “identity
of proofs”.

2. Sequent systems
2.1. Classical propositional logic

We begin the discussion with Gentzen’s Gentzen (1934) sequent calcu-
lus for classical logic. This deductive system permits the proof of special
sequent statements of the form I' = A. In a typical notation, A, B, ...
stand for proposition occurrences, while ©,T',... stand for sequences of
proposition occurrences. A sequent in classical logic is often interpreted
metalogically as a statement that the (possibly empty) formula sequence
A, the succedent, follows from the (possibly empty) formula sequence T,
the antecedent, in a natural deduction or axiomatic system of classical
logic. To permit this interpretation, the succedent must be understood as
a disjunction of its formulae, while the antecedent must be understood
as a conjunction of its formulae. The standard (after Gentzen) presenta-
tion of the classical sequent calculus involves sequents, as just described,
which may have formulae on either side of the arrow; such a presentation
is known as a two-sided sequent calculus. Gentzen’s rules of inference for
the classical sequent calculus may be presented as follows:
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Definition 1 (Classical sequent calculus, Gentzen 1934).

ATl'=06,B

D= D (Axiom) r-e4isp ®
=064 AT =0
Ar-eo U ANBT =0

B,I'=0 L
AT=60 o AnBr=6 "D
'=0,-4

I'=0,4 I'=0,B
I'=06,A B,A=A (1) I'=0,ANB
A— B, I'’A=0,A

(A R)

Al'=0 BI=06 (v L) I'=06,4
AVB,I =0 I =0,AVB
I'=06,B

r-e.avp VR

The above gives the so-called logical rules which show how the operators
work. Because the left and right sides of a sequent are considered as se-
quences, to obtain classical logic one also requires Gentzen’s structural
rules — which are no less logical, in spite of the terms.

Definition 2 (Structural rules for the left side).

(Exchange)
(Thinning) I,B,C,I's =0
I'=0e I1,C,B,Ts = O
IA=0
(Contraction)
I'A,A=0©
A= 06

There are mirror-image structural rules for the right side of sequents also,
which are omitted for space reasons here. A sequent calculus proof is then
a tree-like figure with initial sequents (possibly axioms) at the top and
a conclusion at the bottom called the endsequent. To prove a single for-
mula of classical logic, the initial sequents must be axioms, and the endse-
quent must have this formula as the succedent with an empty antecedent.
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Some variations of the sequent calculus have been defined in which the
antecedent and succedent are sets rather than sequences of formulae (e.g.,
Wallen 1990); in such a presentation the structural rules are “compiled
in” to the definition of a sequent, and are not explicitly stated or used.

The only other rule permitted in a sequent calculus is known as “Cut”,
which certifies a kind of transitivity for sequents:

'=06,D D, A=A
I'N'A=0A

Gentzen’s important result was his “Hauptsatz” stating that the Cut rule
can be eliminated with no loss of logical power for the system. The resulting
Cut-free sequent system then enjoys the subformula property, meaning that
“the formulae occurring in any [Cut-free| proof of a given endsequent are all
subformulae of the endsequent” (Wallen 1990; using an obvious definition
of subformula). It is plain from inspecting the Cut rule that this cannot
be a property of proofs which use it. Thanks to the subformula property,
a classical sequent proof search can be “goal-directed”, working upward
from the endsequent whose proof we seek by applying the inference rules
in reverse. Of course, only Cut-free proofs can ever be discovered in this
fashion.

A goal-directed deduction system is often called analytic, highlighting
the idea that one analyzes the goal sequent to construct (or fail to con-
struct) its proof. The opposite of this is then called a synthetic system,
in which one works from the premisses to the proven expression. A natu-
ral deduction system (e.g., Gentzen 1934) is one example which is usually
thought of as synthetic, since it is not generally used to construct a natural
deduction proof “upwards” from the conclusion. It is worth noting, how-
ever, that natural deductions in the logics considered here can normally
enjoy the subformula property, and so natural deduction can be regarded
as closer to an analytic system than it is sometimes given credit for be-
ing. All of the proof methods discussed in this paper are analytic because
our focus is on “compressed” goal-directed proof schemes, and so the logi-
cal systems to be discussed will be limited to their Cut-free versions. It is
somewhat ironic that, as a referee pointed out, cut-free proofs are generally
longer than proofs with cuts, so in one sense the compression of proofs is
more difficult in the mathematically more pleasant realm of goal-directed
theorem proving.

Smullyan (1968) developed a classical deductive system called analytic
tableaur based upon foundations laid by Beth (1959). It is definitionally
equivalent to a Cut-free sequent calculus handling sets of formulae (thus
doing without structural rules), but the inference rules are explicitly turned
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upside-down, highlighting the analytic approach by placing the desired goal
expression at the top of the proof (called a tableau).

2.2. Multiplicative linear logic

Linear logic was introduced by Girard (1987), and has since been the object
of much study. For our discussion of compressed proof objects, only selected
fragments will be used. We present a two-sided sequent formulation of the
unit-free multiplicative fragment. It is two-sided in the previously used
sense that the derivable sequents have possibly nonempty antecedent and
succedent. This logic is commonly named MLL™.

Definition 3 (Sequent calculus for MLL™ Moot 2002).

A=A (LR)
D= D (Axiom) = AL A
I=AA | I A B= A .
Talsa (D FAoB=aA @D
'=AA T'= BA I'= A B A
rvoAoBan @R poazpa OB
A=A T'.B= A/ 3L '=AA TI'.B= A/ (o L)
TT.ARB= AN OO0 [T, A —B=A,AN
I''A= B,A
r-4-.pa W

Linear logic is substructural, which means that some of Gentzen’s struc-
tural rules for classical logic are not allowed. The only one of Gentzen’s
structural rules that is allowed now is Exchange, so the sequents in essence
keep track of formula occurrences, meaning each side of the sequent con-
stitutes effectively a multiset of occurrences. We also have the Cut rule
allowed, but it is eliminable as before, and we focus only on the Cut-free
version. There follows an example proof of a sequent in MLL™:
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A=A B=21HB
A% B= AB (% R)

C=C

ANBC=ABaC (I%R)
AFB=C o AB0

AR B, (B®C)t = C— A

2.3. Associative Lambek calculus

Now, we discuss other substructural logics which take away more of the
structural rules, both explicit and implicit. An important motivation for
these logics is found in linguistics, where they serve as fundamental systems
within theories of “categorial grammar” and its extension to “type-logical
grammar” (Morrill 1994; Fulop 2004). Our first example is a logic that was
first introduced as a “syntactic calculus” operating on formulae that were
interpreted as linguistic parts of speech (Lambek 1958). In this guise it is
known as the (associative) Lambek calculus.

Definition 4 (Lambek sequent calculus, Lambek 1958).

A=B T[A=C

D= D (Axiom) I'A,B\A] = C (\L)
A= B T[4 =C B,I'= A

[[A/B,A] = C (/L) I'= B\A (OR)
I'B= A A, Bl = C .
r=ap /M Mo =c Y
'=A A=2B A=A T[A=C
NAsden (B T[A] = C (Cut)

Lambek calculus (notated simply L, or L, when empty antecedents are
permitted) is a positive logic in which none of Weakening, Contraction, or
Exchange are permitted, so the logical consequence relation involves se-
quences of formulae. Thus we introduced the standard notation I'[-], which
means a formula sequence with a place identified for substitution which
is matched by another use of the similar notation in the same inference
rule. Once again, the logic enjoys Cut elimination so we deal solely with
the Cut-free version. Associativity of the sequences is assumed, as a kind
of implicit structural rule; we show what happens next when even this is
removed.
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2.4. Nonassociative Lambek calculus

The last system to be introduced is a version of Lambek calculus from
which even the implicit structural rule of associativity is taken away. This
nonassociative Lambek system NL was first described in 1961 (Lambek
1961) where it was motivated by linguistic applications, and it has since
been recognized as fundamental within the area of type-logical grammars
for linguistics (Moortgat 1997; Fulop 2004). This system is especially use-
ful for grammatical deductions because, without associative sequences, the
sequent calculus handles binary trees of formulae that can be used to repre-
sent the syntactic structures of languages. The sequent presentation below
does without the product operator ‘e’, because this is logically superfluous
in a sequent formulation (as it is even in the associative system L above).
The nonassociativity of the sequents is here emphasized by replacing the
usual comma with the sequent-level operator ‘¢’. The sequent system en-
joys Cut-elimination and is single-conclusion, so that all provable sequents
have a single succedent formula.

Definition 5 (NL sequent calculus, Lambek 1961).

A= B T[A=C

A= A (Axiom) T[(AoB\A)]=C L)
A=A TA=C ('eB)=A

Al © (Cut) Toap VR
A= DB T[4 =C (Bol')= A
I[(A/BoA)] = C V'L I'= B\A (\R)

3. Proof compression

A key application of analytic deductive methods has been automated de-
duction. A significant problem for the sequent/tableau systems in this
arena is the inefficiency resulting from a large search space. Much progress
has been made in the development of efficient proof search by applica-
tion of goal-directed logic programming methods such as resolution (e.g.,
Gabbay & Olivetti 2000). The primary focus here will not be on efficient
search for complete proofs, but rather on the question of how can an ana-
lytic proof be compressed, and thereby become a fundamentally different
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sort of object that can be viewed in a new way, and possibly constructed
more efficiently.

It has been explained many times in the literature (e.g., Dyckhoff &
Pinto 1999) that, even restricting attention to Cut-free proofs, the sequent
and tableau calculi may validate numerous proofs of a given sequent. These
several proofs may differ either “trivially” or non-trivially in the order of
application of some of the rules. The propensity for the sequent/tableau
systems to suffer from spurious ambiguity caused by trivial rule permu-
tation has been explained in detail elsewhere (Wallen 1990), so here we
simply note the fact and consider its ramifications and proposed remedies.
In this paper, we will consider two kinds of “compressed proof objects”,
which differ philosophically with respect to the spurious ambiguities just
mentioned. The first of these, the matriz method, constructs a minimal
compressed proof object that is really nothing beyond a provability test.
There is a compelling argument that a matrix proof of a sequent is not re-
ally a proof anymore, because not only trivially different, but also nontriv-
ially different sequent/tableau proofs are all collapsed. A provable sequent
has, by definition, exactly one matrix demonstrating its validity.

The second kind of compressed proof object to be considered here is
the proof net. Proof nets were originally described for linear logic (Girard
1987), and it has been claimed for that system that they compress proofs
to “just the right extent”, in the sense that any two sequent/tableau proofs
which are nontrivially different will have distinct corresponding proof nets,
while any two sequent /tableau proofs which differ only spuriously (i.e., by
“harmless” permutations of the rules) will have the same proof net cor-
responding (Strafburger 2006). The philosophy behind proof nets is to
always seek, if not achieve, this correspondence for the logic at hand, be-
cause a proof net is supposed to be something beyond a minimal provability
test — proponents think of it as “the essence of a proof.” There is, however,
no current consensus among logicians as to what precisely should count as
a nontrivial difference between two proofs.

4. Matrix methods

In classical and intuitionistic logic, the redundancies and other difficul-
ties with standard proof calculi led to the matrix methods, independently
invented by Bibel (1980) and Andrews (1981), but perfected by Wallen
(1990). Here we follow Wallen’s exposition, and the unifying notation of
Smullyan’s signed formulae will be of utmost importance.



A survey of proof nets and matrices for substructural logics 195
4.1. Unifying notation of signed formulae

It would be redundant to present the inference rules of Smullyan’s tableau
calculus for classical logic, since they are essentially the same as those of
Gentzen’s sequent calculus. One important element of Smullyan’s treat-
ment that will be important for our discussion throughout, however, is
his “unifying notation” which uses signed formulae classified into two ba-
sic varieties Smullyan (1963). A signed formula is just a formula P which
is annotated by a sign, or polarity, which we will show as either PT or
P~. The sign is used to indicate the “negation environment” of the for-
mula occurrence within a sequent, so that negative formula occurrences
are all those that are within the scope of an explicit or implicit negation.
An “implicit negation” environment is always (and only) the antecedent
of a conditional or of a sequent. This definition comes from the truth-
functional equivalence between formulae A — B and - A V B. Smullyan
used signed formulae to avoid writing sequents directly with the sequent
arrow; his rules for positive formulae exactly mirror the succedent (R) rules
in the sequent calculus, while tableau rules for negative formulae mirror
antecedent (L) rules in the sequent calculus.

Signed formulae are then classified by Smullyan into two fundamental
kinds, which can be determined by inspecting the sequent rules shown
above. The key question is whether the inference rule “branches”, having
two premisses. A branching rule governs a “signed formula of type B”,
which we may call disjunctive, after the canonical example of the rule
(V L). A rule with only one premiss, on the other hand, governs a “signed
formula of type A”, which we may term conjunctive. The conjunctive signed
formulae in classical logic are these:

(AANB)™,(AVB)", (A= B)", (mA)", (mA)”
The disjunctive formulae are the others:

(AVB)",(ANB)",(A— B)~

4.2. Classical logic matrices

Step one of the matrix method, and also ultimately of the proof net
method, is to decompose the target sequent or formula into a tree of its
subformulae that keeps track of the signs.
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Definition 6 (Wallen 1990). A formula tree for a signed formula A9, g €
{+,—} is a tree of subformulae of A together with an assignment of a
sign to each position k of the formula tree. Fach position k then contains
a signed formula occurrence from within A; the formula occurrence apart
from its sign at k is called the label of k. Let lab(k) and sgn(k) denote
the label and sign of position k respectively. For each position k, if lab(k)
occurs positively in A9, then sgn(k) = g. If lab(k) occurs negatively in A9,
then sgn(k) is the opposite sign from g.

Definition 7 (Wallen 1990). A path through formula A9 is a subset of
the positions of its formula tree, defined inductively:

1. {ko}, the root position, is a path.

2. If s,« is a path, so is (s — {a}), a1, a9, for conjunctive a having
a1, e as immediate subformulae.

3. If s, is a path, so is (s—{a}), a1, for conjunctive o having oy as its
sole immediate subformulae (this is the case where « is a negation).

4. If 8,8 is a path, so is (s — {B}),P1, and so is (s — {B}), B2, for

disjunctive B8 having b1, B2 as immediate subformulae.

The second through fourth clauses above can be regarded as path reduction
steps. A completely reduced path will consist entirely of (signed) positions
labeled by atoms, and is called an atomic path.

The above formulation can be easily extended from signed formulae to
two-sided sequents of signed formulae. The simplest way is to decompose
each of the antecedent formulae and succedent formulae separately. The
antecedent formulae are negatively signed, while the succedent formulae
are positively signed, and one decomposes the whole set of signed formulae
into a set of formula trees as above, treating the compound tree as a single
graph with “multiple roots.” The above definitions of a path through the
tree and an atomic path can then be applied mutatis mutandis.

Definition 8 (Matrix representation Wallen 1990).

1. If signed formula AY is conjunctive, its matriz representation is a
row matriz having as element(s) the signed component(s) found im-
mediately below in its formula tree.

2. If signed formula A9 is disjunctive, its matriz representation is a
column matriz having as elements the signed components found im-
mediately below in its formula tree.
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3. If signed formula A9 is atomic, it is its own matriz representation.

A completed matrix for a signed formula must have every subformula in
every submatrix converted to matrix representation; matrices are to be
nested as needed. The matrix representation extends to signed two-sided
classical sequents by a simple adaptation of the procedure described above
for sequent trees. The matrix of a sequent is then simply a “row matrix”
whose elements are the respective matrices of the constituent formulae.
This fact can be related to the “metalogical” view of a sequent in which
the antecedent formulae are conjoined while the succedent formulae are
disjoined; observe that a conjunction in the antecedent and a disjunction
in the succedent are each formulae of conjunctive type, and so a row matrix
is the correct form for each.

Every atomic path through a signed formula (or sequent) is now repre-
sented by the sequence of signed atoms encountered on a left-right sequence
of steps through the columns in its completed matrix — submatrices are to
be stepped through as well in this procedure Wallen (1990). When a step
enters a column matrix, only one row is selected (nondeterministically) for
the atomic path, while the other is ignored.

The key idea at the core of the matrix method is that of a spanning
set of connections.

Definition 9. A connection is a pair of atomic positions in some path
through A9, which have the same label but opposite signs. A given set of
connections is said to span AY iff every atomic path through A9 contains
a connection from the set.

Theorem 10 (Wallen 1990). For signed propositional formula A%, the
existence of a spanning set of connections for it ensures its provability in
classical logic, and vice versa.

The above definition and theorem concerning a spanning set of connections
also extends in a simple fashion mutatis mutandis to signed two-sided
sequents. For clarity, this may be stated as follows:

Corollary 11. For signed sequent I~ = AT, the existence of a spanning
set of connections for it ensures its provability in classical sequent calculus,
and vice versa.
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An example sequent provable in classical logic is shown in (1); the corre-
sponding matrix of the sequent is shown in (2).

-A, B—+A=-B (1)
oo |BT -
||| B @

This matrix presents two atomic paths: (AT, BY, B7) and (A*,A~, B7).
The spanning set of connections is then {(AT, A~), (BT, B7)}, the exis-
tence of which shows the sequent to be provable in classical logic. Any
sequent of classical propositional logic can be tested for provability using
our adaptation of Wallen’s matrix method to two-sided sequents. The se-
quent calculus (or tableaux method) can now be regarded as extremely
inefficient methods of checking that every atomic path through the goal
sequent tree contains a connection from a spanning set!

4.3. MLL~

The matrix method for linear logic was presented by Galmiche (2000). The
matrix representation of a sequent is obtained from the signed sequent
tree just as with classical logic. The matrix for the sequent proven above
in subsection 2.2 is shown in (3); a spanning set of connections for this
matrix is given in (4).

0[] e
{(A", A7), (BT, B7),(CT,C7)} (4)

Reflecting the differences between MLL™ and classical logic, it is no longer
sufficient that the sequent matrix possesses a spanning set of connections,
however. Galmiche stated the additional requirements for the set S of
connections to linearly span a matrix in the following way: (1) All atomic
occurrences in the matrix occur exactly once with each polarity in S; (2) no
pair of connections in S has overlapping elements; (3) S is a minimal span-
ning set. It is easy to see that the set of connections in (4) does linearly
span the above matrix for the sequent. Galmiche stated the theorem that
a sequent of MLL™ is provable just in case its matrix possesses a set of
connections which linearly spans it. It is notable that, despite present-
ing this as a proven fact, Galmiche never really proved it in his paper.



A survey of proof nets and matrices for substructural logics 199

It is nevertheless possible for us to appreciate, at a glance at least, how
the additional conditions defining a linearly spanning set derive from the
characteristic that MLL handles multisets of formulae (cf. condition 1),
effectively keeping track of formula occurrences and not allowing contrac-
tions of repeated formulae (cf. condition 2) or extraneous formulae (cf.
condition 3) into a proof.

Having discussed the matrix method and signed formulae, it will be
much easier to understand proof nets, a subject to which we turn next.

5. Proof net methods

The sequent and tableau methods yield too many possible proofs of a
given sequent, and have an undesirable amount of notational redundancy
for automated theorem proving applications. The matrix method described
above has certainly eliminated the redundancy, but now there are in a sense
too few proofs of a given sequent for some applications; in fact, each prov-
able sequent has precisely one matrix. This may be acceptable for theorem
proving, but there are theoretical reasons to desire a proof representation
that captures “the essence of a proof.” This notion is related to the general
problem of the identity of proofs (Dogen 2003), and the compressed proof
objects known as proof nets have been put forth as solving this problem
for MLL, at least Strafburger (2006).

5.1. MLL™

Our discussion of proof nets must begin with MLL™, since Girard (1987)
developed linear logic and proof nets at the same time. The proof nets are
in fact a subclass of the decomposition graphs known as proof structures.
Just as the matrix of a sequent is produced from the decomposition of the
signed formulae while distinguishing conjunctive from disjunctive formulae,
a proof structure is a special graph that is drawn from a formula or sequent
decomposition, also keeping track of the polarities and the conjunctive or
disjunctive nature of the signed formulae. The subgraphs which are drawn
for each type of formula decomposition are traditionally called links; to
complete the proof structure, pairs of atoms having opposite polarity are
linked together by edges called aziom links.

The MLL™ link schemata which may be used to decompose formulae
in a proof structure are shown below. It should be mentioned that these
link drawings are to be viewed as representing graphs without further
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geometric properties, so that the specific orientation of a link drawing or
whether edges cross is unimportant. A complete proof structure for the
provable MLL sequent already studied above follows the link presentation
below. The resulting graph has two sorts of edges, which serve to dis-
tinguish the conjunctive from the disjunctive binary formula occurrences
(negation is excluded from the conjunctive/disjunctive dichotomy for this
purpose). The binary links shown with solid lines are the disjunctive for-
mulae, traditionally called times links (typified by the link for the times
connective ® in a positive context), while the dotted lines show the con-
junctive formulae, traditionally called par links (and typified by the link
for the par % connective in a positive context). Axiom links are shown
with curved lines in the proof structures. Some formal definitions follow.

MLL™ links:
[AL]E [A® B~ [A?m+ [A® B]- [A® B]*

A¥ A~ B~ AY BY A~ B~ At Bf
A — B|™ A — B|T
A—Bl A

At B~ A~ Bt

Formula(e) on top of each link are called conclusion, and formulae on the

bottom of a link are called premiss. The axiom link is unique in having no
premisses and two conclusions.

MLL™ proof structure:

Definition 12 (Moot 2002). A proof structure (S, L) consists of a set S of
signed formulae and a set L of links over S (from the above possibilities).
A proof structure must also satisfy the conditions:

e FEvery formula in S is at most once the premiss of a link;

o FEvery formula in S is exactly once the conclusion of a link.
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[AB B~ [(BeC)]” = [C— A"

[B® O]t

A~ B~ At

( N
g+ C+)

The proof structure exemplified above is two-sided, because it can be cre-
ated for a sequent with formulae on both sides of the arrow =-. It is pos-
sible to enumerate all possible proof structures for any sequent now by
decomposing all connectives until we reach the atomic formulae, and then
connecting positive to negative atoms using axiom links (Moot 2002). The
two-sided means of presenting a proof structure is, however, not common
in literature on linear logic, and has never been fully described in published
literature.! In the literature, MLL proof structures are almost invariably
one-sided — meaning they can be constructed only for a one-sided sequent
calculus with empty antecedents. Moreover, such structures cannot involve
the implication or negation operators overtly as above, because they fur-
thermore do not keep track of the polarities of formulae. For our purposes,
the usual one-sided proof structures for MLL obscure the fundamental
relationship with matrix methods and the unifying notation of signed for-
mulae, so here we stick with the two-sided dialect.

Completing a proof structure for an MLL sequent is an important step
toward demonstrating provability of the sequent, but it is not yet sufficient.
A proof structure for a provable sequent is known as a proof net, and
only those structures which satisfy an additional correctness condition are
indeed proof nets. An impressive list of alternative correctness conditions
for MLL proof nets has arisen from years of research on the topic, beginning
with the original “long trip” condition of Girard (1987). This condition is
somewhat cumbersome for our purpose here, so we will first describe a
popular correctness condition due to Danos and Regnier (1989).

! The presentation here is derived from class lecture notes Strafburger (2006).
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Take a proof structure as a graph; let us call it P. Now, let o(P) be a
new graph derived from P by deleting some edges. Specifically, o acts to
delete one edge nondeterministically from each par link in P, and is called
a DR switching.

Theorem 13 (Danos—Regnier correctness condition). A proof structure
P is a proof net if and only if every DR switching o(P) of it yields a
connected acyclic graph.

The Danos—Regnier switching condition is easy to apply to small proof
structures — the structure presented above is easily seen to satisfy it — but
has exponential complexity because of the need to check the result of every
DR switching of a proof structure for acyclicity and connectedness Moot
(2002).

A more efficient condition was first presented in the PhD dissertation
of Danos (1990), and involves transforming a candidate proof structure by
graph contractions (v. Gross & Tucker 1987 for a formal definition of graph
contraction). The two Danos contraction rules are presented as follows in
Moot (2002):

Y. Y

o .
The basic idea is that two ‘par’ edges transform to a single ‘times’ edge just
if they connect the same two vertices (this can only result from previous

contractions), and any two vertices linked by a ‘times’ edge contract to
one vertex.

Theorem 14 (Danos contraction condition). A proof structure is a proof
net if and only if it contracts to a single vertex by successive application
of the Danos contraction rules above.

The figure sequence below shows the successive contraction of the
proof structure presented above; formulae are irrelevant for this condition,
and are replaced by simple vertex labels. The equivalence between the
Danos-Regnier switching condition and the Danos contraction condition
was proven very simply in Strafburger (2006).
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5.2. Intuitionistic MLL

We refer back to the sequent calculus rules for MLL™; this system is ren-
dered intuitionistic by endowing it with the single-conclusion property, by
which all sequents must have just one succedent formula (Moot 2002). The
positive fragment of this system with only ® and —o is known in the liter-
ature as multiplicative intuitionistic linear logic (MILL), and it has some
thinly disguised early roots.

A kind of decomposition graph for MILL formulae was published by
Kelly and Mac Lane in 1971 in their study of coherence in categories, and
is possibly the first work on a compressed proof object showing aspects
of the matrix and proof net methods. The Kelly-Mac Lane graph of a
MILL formula shows its decomposition to signed atoms; if linking atoms
in opposite polarity pairs can be achieved, then one has essentially a proof
structure, but a correctness criterion is still required for such a structure
to be a proof net (Moot 2002).

To build a proof structure in MILL, one begins as in MLL by decom-
posing the sequent into subformulae down to the atoms while keeping track
of the polarities and the conjunctive/disjunctive property of the formula
at each stage. The antecedent formulae are first given a negative sign while
the succedent formula is given a positive sign. Beyond this there are just
two operators, and the decomposition proceeds so that [X ® Y]i yields
X* Y* while [X — YT yields XT, Y™, as above in MLL. Signed formu-
lae of the form [X ® Y]7,[X —o Y] are the conjunctive ones as in MLL,
which are assigned a par link. The formal definition of a proof structure
in MILL (without units) is the same as the above for MLL™ mutatis mu-
tandis, and either of the above correctness conditions for MLL proof nets
carries over to the case of MILL (Moot 2002).

Below we show two proof structures for posited sequents of MILL; only
the first one is a correct proof net, in which each DR switching yields a
connected acyclic graph. The second proof structure has a cycle following
removal of the right branch of the par link, demonstrating the posited
sequent to be underivable in MILL. We see that MILL proof nets are
merely a subspecies of MLL nets, however, one reason to discuss this logic
separately here is to highlight the much earlier literature (Kelly & Mac
Lane 1971) that first defined proof structures for this system, and was
also first to make use of signed formulae in a linear logic system. MILL
is in a sense also the archetypal logic in this family possessing the single-
conclusion property.
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X" = V= (XeY)
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[k@ Y]+
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X" = (Y = X)oY]"

5.3. Classical logic

Classical (propositional) logic is actually quite similar to linear logic; all
of the differences derive from the presence of Gentzen’s structural rules
of Weakening and Contraction. It is interesting to see how the definition
of a proof net carries over to this case. Proof nets for classical logic have
been developed by Robinson (2003) following the two-sided paradigm given
above for linear logic, in which there are distinct links for decomposing each
connective in a positive versus a negative context. The system therefore
derives naturally from Smullyan’s unifying notation for classical logic, al-
though Robinson did not cite this prior literature. The conjunctive and
disjunctive links for the decomposition of signed formulae are very similar
to the ones needed for MLL, and are presented below with adjustments
to suit our notation here (leaving aside the degenerate links which would
handle the true and false units, not used here).

Classical logic links:

A [AVBIT [AVBY [AABIT [AABI

| AN

AT A~ B~ A* Bt A~ B~ At Bt

A — B|~ A — B|T
AT Moy
AT B~ A~ BT
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As Robinson showed, more is needed to obtain a kind of proof net that
enjoys the same correctness conditions which govern MLL. Specifically,
Robinson added links corresponding to the structural rules of Contraction
and Weakening; the former are conjunctive while the latter are disjunctive.
Once again our presentation changes the link notation somewhat to make
it uniform with the presentation of MLL.

Structural links:

A* BE A*
[Cont] + [Weak]*
Ai Ai BT

With these additions, a proof structure can be constructed for a classi-
cal sequent, relying on Definition 12 from the MLL case. The correctness
conditions it must meet to be a proof net for a provable sequent are also
carried over from MLL with no changes. An example is now shown.

Classical proof net:

This classical proof net turns out to have no conjunctive links, so it has to
be a connected acyclic graph as it is shown according to the Danos—Regnier
condition, and indeed it is. Robinson also gave an elegant, simple expla-
nation connecting this correctness condition to the unifying notation, to
be restated now. If a proof net comes from a proof, the graph must be
simply connected, which forces the switching condition in the following
way. A disjunctive (‘times’) signed subformula A o B for any operator o
has “branched” premisses which come from separate subproofs, and so are
not yet connected, so the occurrence of A o B must be joined to both pre-
misses otherwise the proof net would end up disconnected. On the other
hand, a conjunctive (‘par’) signed subformula C o D has premisses coming
from the same subproof, so they are already connected. The formula Co D
must then be joined to exactly one premiss or the graph will contain a
cycle. This explanation is also applicable to the linear logic cases. It is
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interesting that the only real difference between the MLL™ and classical
proof net systems is the addition of the special links for Contraction and
Weakening.

5.4. Associative Lambek calculus

So far we have discussed classical logic, which in essence handles formulae
in sets, and two varieties of linear logic, which remove the Weakening and
Contraction rules, and thereby keep track of occurrences of formulae. It
is useful to note at this juncture that these logics have both matrix and
proof net methods available for checking provability of sequents, neither of
whose correctness conditions refer crucially to the geometrical arrangement
of the proof object. It is apparent that a matrix of a sequent does not have
any interesting geometrical properties; moreover, although a proof net is a
kind of graph, there is nothing very “geometrical” about these proof nets
so far. It is unimportant whether the link lines in a drawing of the graph
cross, for example.

In fact, L is basically MILL without Exchange. The lack of Exchange
(or “commutativity”) has effectively split the linear implication into a pair
of directionally sensitive implications notated with the slash operators.
Each slash is interpreted as saying that the formula on top of the slash
results when the formula under it is adjacent on that side. The newfound
sensitivity of the logic to the arrangement of formulae in a sequence has a
profound effect on the definition of a compressed proof procedure. Below,
the binary links for proof nets in the Lambek system L are provided, follow-
ing Roorda (1991; 1992); this time, however, the geometry of the drawings
as shown provides important information. The left-right arrangement of
the subformulae in a decomposition link is now critical; one must swap the
order of the subformulae with respect to the parent formula in the positive
links only.”

2 One of the very few sources to provide these link drawings for Lambek proof nets
(Moot 2002) has got this condition backwards, unfortunately.



208 Sean A. Fulop

Links for L.:
BATABE (B ABI

B- A+ AT B~ A~ BY Bt A-

[Ae BT [A,'f?]_ Aj\/Af
Bt At A~ B~

L proof structure. It seems that the formal definition of a proof
structure in L can be kept the same as for the systems above. An example
is now shown.

Co(@AB B = At
- ~

This example is in fact also a proof net for the provable sequent. This proof
net satisfies the Danos—Regnier condition plus an additional requirement
of planarity which was first proven necessary by Roorda (1991); each DR-
switching graph is not only acyclic connected, but also planar as shown in
the drawing.

Although this treatment here applies generally to the system L. al-
lowing empty antecedents, it has been shown (Lamarche & Retoré 1996)
that we may exclude all sequents with empty antecedent by an additional
requirement about subnets of a proof net. A subnet is, in our notation, a
down-closed subset of the nodes such that axiom links stay inside the sub-
structure. Then, to exclude sequents with empty antecedent, it is sufficient
to require that every subnet of a proof net possess at least two conclusions
(i.e., local root formulae at the top).
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A different presentation of a noncommutative linear logic was also
shown to require planar proof nets (Abrusci 1991), around the same time as
Roorda’s result about the Lambek system. The NCMLL system described
in the reference is equivalent in its multiplicative fragment to another non-
commutative logic (Pentus 1997), which in turn is a conservative extension
of L¢ (Abrusci 1997). Thus it is beginning to look as if noncommutativ-
ity of the logic (i.e., lack of Exchange) leads directly to a new geometric
requirement of planarity of the proof net. It is also not at all obvious
that a version of the matrix method could somehow be formulated for this
kind of logic, for now the specific arrangement of the formulae is critical.

5.5. Nonassociative Lambek calculus

Despite having been discussed many times in the literature, the system NL
has never had a proof net scheme defined for it in a way that relates clearly
with the other proof net schemes presented here.? It turns out to be quite
easy to adapt the proof nets for associative L, but an additional correctness
condition is required that has never been developed in literature, and which
makes the resulting nets even more “geometrical.” This is the only novel
result to be introduced in the present survey.

Let us discuss several examples of NL proof structures to develop the
additional correctness condition. Example 1 shows the basic kind of struc-
ture for a provable sequent, which is planar just as in system L. A further
correctness condition is needed in order to account for the effects of the
parentheses, which govern the nonassociative structure of the antecedent.
To develop this extra condition, we draw dotted boundaries from each
pair of parentheses in the antecedent, extending around the first decom-
position link whose active conclusion subformula is governed by that pair.
Such boundaries in our proof nets will be called parenthetical boundaries.
Examining the axiom links in the final structure, observe that only the
link coming from the negative B atom, which connects to the succedent,
crosses the parenthetical boundary that contains it.

3 A proof net system for “classical” NL was provided in de Groote & Lamarche (2002),
but these authors used a quite different formulation whose definition and correctness
condition bears little obvious resemblance to the proof nets so far discussed.
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Example 1
Ao (A\B)Clo  CO=> B

Example 2, by contrast, shows a similar proof structure for a non-provable
sequent whose antecedent has the parentheses wrong. The structure is
indeed planar, so the sequent would be provable in system L by invoking
associativity, but observe that now both of the antecedent axiom links
cross the first boundary (the outer boundary is not shown). The problem,
in reality, is the C-link, because the link from the positive atom crosses the
parenthetical boundary which contains it. We therefore state this as part
of the correctness conditions.

Theorem 15. An NL-proof structure is a proof net for the decomposed
sequent just in case:

o the Danos—Regnier switching condition, or other equivalent condition,
holds of the structure;

e the structure is planar;

e no axiom link from a positive atom crosses the parenthetical boundary
which contains it.

Example 3 illustrates the structure for a more complicated provable se-
quent, and we observe that two axiom links cross boundaries, but neither
involves a link from a positive atom crossing the boundary which con-
tains it.
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Example 2
Ao (ABYCI). ¢ = B

Example 3
(Do [D\A)o

It is quite easy to see the necessity of this correctness condition, so a brief
explanation should suffice here. Note first that for each slash operator in
a provable NL sequent, there must be a pair of parentheses surrounding a
formula which contains it, and also surrounding the neighboring occurrence
of the subformula under the slash. Every atomic subformula under a top-
level slash (i.e., one not itself within a proper subformula) in the antecedent
of the sequent will decompose to a positive signed atom in the proof net,
while the neighboring atom of the same label will show the opposite sign
(cf. Example 1). With the parentheses in the right place, an axiom link
connecting the two atoms will not cross a boundary determined by them:;
with parentheses in the wrong places, the positive atom will be contained
within a boundary which does not contain its counterpart negative (cf.
Example 2). This argument extends by a structural induction to more
complicated formulae. In essence, the device of the boundaries is a way of
checking the grouping action of the parentheses in the proof net.
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Example 4 shows that care must be taken to draw the parenthetical
boundaries when subformulae involving “useless types” occur in the se-
quent. Observe that the subformula C'/D has types C and D which are
“useless”, in that they do no work in reducing the sequent. When this is
the case, we must draw the boundary all the way around the axiom links
which connect the decompositions of the occurrences of C'/D. After draw-
ing the boundaries appropriately, we observe that once again no axiom
link coming from a positive atom crosses a boundary which contains it.
The proof structure for this provable sequent is then a proof net, under
our newly formulated condition.

Example 4
ro {((ANB)/(O/D)]o ©/DI7), = BY
. / : '

—

We have at last descended all the way down the substructural hierarchy.
As the logics became more stringent in dealing with a specific arrange-
ment of formulae, the conditions on proof nets became accordingly more
geometrical. Moreover, we noted that for those logics that do not deal with
a specific arrangement of the formulae, it was possible to invoke the ex-
tremely compressed proof format of the matrix method. It is the author’s
hope that this unified discussion has illuminated the ways in which the
“geometry” required of formulae in a logical consequence relation ends up
being encoded into the “geometry of proofs” validating sequents for the
logic. There are probably also some connections that could now be made
with work that has explicitly represented proof nets topologically as cell
complexes (e.g., Métayer 2001).
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6. Complexity issues

While complexity of proof methods is not our focus here it must at least be
mentioned, since the improvement in efficiency offered by compressed proof
objects is a major reason for their promotion and study. The complexity of
the decision problem in MLL has been shown to be NP-complete (Kanovich
1991), so no theorem-proving scheme can ever really be tractable. The best
that can be hoped for is minimal intractability. Proof nets have mostly
been studied for the time complexity of the proof verification problem, and
along these lines, the Danos contraction condition as described above has
complexity O(n?) in the size of the proof structure Moot (2002). Guerrini
(1999), however, showed how to convert the contraction algorithm into one
with linear complexity. Another way of developing a linear time correctness
check was shown by Murawski and Ong (2000). Given the existence of
linear-time algorithms to check correctness of a proof structure, the origin
of the overall NP complexity is therefore the proof construction due to the
sheer number of possible proof structures to be checked, because how to
create axiom links can be indeterminate after expanding the formula tree.

Turning to the matrix method, the way to check correctness of a ma-
trix involves traversing all paths through it to see whether there exists a
(linearly) spanning set of connections for it. Now, while a matrix appears
to be a proof object of a truly minimal size and graphic intricacy, the
worst-case complexity of checking a matrix would seem to be exponential,
on the order of 2" in the length of the formula. This can happen in the
case of a formula that involves nested disjunctive subformulae, which will
yield nested column matrices through which all paths must be traversed.
For this reason, the matrix method was dismissed out of hand by Hughes
(2006) as not even a “proof system”, which has occasionally been defined
(Cook & Reckhow 1979) as a system in which proofs can at least be veri-
fied, if not constructed, in polynomial time. The matrix method does bear
the singular feature that actually constructing the proof object is deter-
ministic and linear-time. But, to borrow a common adage, if logic were
that easy everyone would be doing it. The matrix method’s powerfully
simple proof construction leaves a large debt to be paid on the other end
of the deal, when the time comes to check it. So in rough terms, matrices
are easy to build but potentially hard to verify (not unlike the case of
truth tables),* while the opposite is true for proof nets. In practical ap-
plications, of course, all these considerations are less important than the

* Thanks to the referee for pointing out this similarity.
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ultimate competition among the average-case complexities, and discussing
that is beyond our scope here.

7. Identity of proofs

The identity of proofs problem remains a significant open research ques-
tion in logic and proof theory (Dogen 2003).% Simply put, for any given
logical system this is the question of when two apparently different proofs
(of the same formula) ought to be regarded as fundamentally “identical.”
While at first glance this issue appears tangential to the main track of
the present paper, it has to be addressed because it has so often been a
central concern in the community researching proof nets for the system
MLL, among others. Proof nets have usually been promoted as addressing
this question directly (Girard 1987), and have sometimes been claimed to
actually solve the issue (Strafburger 2006). It will now be explained how
such claims should be viewed as exaggerated.

There may in general be more than one proof net for a provable se-
quent, however there can often be fewer possible proof nets than possible
sequent proofs, even in a Cut-free system. Each proof net has often been
viewed as representing an equivalence class of sequent proofs modulo “spu-
rious ambiguity”, while distinct proof nets will sequentialize respectively to
full sequent proofs which are “nontrivially” distinct (Strafburger 2006). In
lecture notes (op.cit.), Stralburger goes so far as to claim a theorem stat-
ing that two sequent calculus proofs in MLL translate to the same proof
net iff they can be transformed into each other using only “trivial rule per-
mutations.” Yet, such a theorem seems to be circular, for in order to have
this result one must assert in advance precisely what kinds of sequent rule
permutations are held to be trivial and which are nontrivial. But it is this
last issue that remains fundamentally a matter of debate!

Moreover (as DoSen pointed out to me), on Strafburger’s analysis,
two sequent proofs which differ only by the presence of a useless Cut rule
must be held to be nontrivially distinct, because the one with Cut will
translate to a proof net involving a Cut link. Yet there is broad agreement
among logicians that a sequent proof involving Cut should be regarded as
“identical” to its Cut-free variant. Proof nets, therefore, should not be seen
to have solved the identity of proofs question for any logical system. As for
the matrix of a sequent, there can be only one, so as a proof-theoretical

5 . . . . . o
° This section owes a great debt to personal communications with Kosta Dosen, and I
herein communicate some of his arguments.
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object it does not address the fundamental question of “identity of proofs”
other than to trivialize it.

8. Concluding remarks

Past literature has rarely, if ever, connected all the topics and treatments
touched on in the present paper. It is in the spirit of a new synthesis that
the paper is offered, with the hope of a more complete understanding. We
observe many connections between efforts to compress proof schemata,
where the geometrical requirements of the compressed proof object arise
out of the substructural nature of the logic. We also observe the connection
between signed subformulae, which arise out of the concept of negation
and the duality therefrom, and the “link” or “connection” notions which
are central to the compressed proof objects, whether matrix or proof net.
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