
K + K = 120 / p. 353 / May 3, 2019

K + K = 120: Papers dedicated to L. Kálmán & A. Kornai on the occasion of their 60th birthdays, pp. 353–368

Independently generated languages

MARCUS KRACHT
Bielefeld University
marcus.kracht@uni-bielefeld.de

TOMASZ KOWALSKI
La Trobe University, Melbourne
t.kowalski@latrobe.edu.au

KEYWORDS

compositionality
autonomy
independence
independently generated
language

ABSTRACT

A language is compositional if themeaning of an expression is a function
of the meanings of its parts, determined by the mode of composition.
A dual syntactic property is known as the autonomy of syntax: the form
of an expression is independent of themeanings of its parts. It is easy for
a language to satisfy the property on one side, as long as the other side
is completely unconstrained. Satisfying both of them simultaneously is
much harder.We call this property independence, and investigate condi-
tions underwhich a language is independently generated.Weconjecture
that there exist non-independently generated languages.

1. Compositionality versus Independence

How do humans understand the meaning of a complex sentence they have
never heard before? The answer is that there is an algorithm that al-
lows to compute the meaning of the complex expression from its parts.
While this much seems uncontroversial, semanticists have actually argued
that natural languages possess a stronger property, that of composition-
ality. A language is said to be compositional if the meaning of a complex
expression is a function of the meaning of its parts given the mode of
composition; thus, a language is compositional if the algorithm computing
the meaning can do so without knowing the expressions that carry these
meanings. It is this latter property that has been made into a litmus test
for formal semantic theories. A theory that provides a compositional ac-
count of meaning is preferred over one that does not. But how much of

K + K = 120 / p. 354 / May 3, 2019

354 Marcus Kracht – Tomasz Kowalski

a constraint is compositionality on a language? In other words, what em-
pirical significance does it have to say that a language is compositional?
Do noncompositional languages at all exist?

While the introduction of the subject is often credited to Montague,
it is perhaps the work that has been done in the wake of Montague that
had put compositionality firmly on the agenda of formal semantic theo-
rising, see Janssen (1997) for an account by one of the protagonists. The
survey books Barker & Jacobson (2007) and Hinzen et al. (2012) docu-
ment the persistent interest in this notion. From a mathematical point of
view, the question is how much of an empirical content this notion has.
Janssen has actually shown that any language is compositional, provided
no constraints on syntactic operations are being made (see Janssen 1997).
Though his notion of language is slightly nonstandard, the result holds also
for languages in the Saussurean sense, i.e., relations between expressions
and meanings.

However, as Kracht (2011) has pointed out, the dual property, namely
that the form of an expression is independent of the meaning of its parts,
is actually a well known hypothesis of generative grammar: It is called the
autonomy of syntax. It is curious that to our knowledge no definition of this
notion with the same explicitness has ever been given in print. In retrospect
it seems that a grammar that satisfies both of them simultaneously is
really what linguistics have been after, and not compositionality alone.
We call this property independence. It has a rather simple mathematical
formulation, so the investigation may also be of interest in combinatorial
theory.

Moreover, it turns out that the property of independence is actually
rather tricky. It is still unclear whether there exists a countable language
that is not independently generated. Though we believe that such a lan-
guage exists, we have not been able to find one. The results here exhibit
some positive results (specifying languages that are independently gen-
erated) and reduces the complexity of the original problem somewhat.

We thank our reviewer for suggesting ways to improve this paper.
Also, Marcus Kracht wishes to thank András Kornai for his friendship and
the endless discussions on mathematics, language and life.

2. Autonomy and compositionality

A language is an arbitrary subset L of E ×M , where E and M are given
sets of expressions and meanings, respectively. An independent grammar
for L is a finite set F ⊆ L and a finite set P of pairs of functions (fi, gi),

K + K = 120 / p. 355 / May 3, 2019

Independently generated languages 355

i < m, such that for i < m there is an ni (the arity of the functions) such
that fi : Eni ↪→ E and gi : Mni ↪→ M are both partial functions and L is
exactly the set that can be generated from F using P . The action of such
a pair is defined as usual: (f, g)((e0,m0), · · · , (eni−1,mni−1)) is defined if
and only if both f(e0, · · · , eni−1) and g(m0, · · · , eni−1) are defined and in
that case

(f, g)((e0,m0), · · · , (eni−1,mni−1)) := (f(e0, · · · , eni−1), g(m0, · · · ,mni−1))

There is an obvious mathematical generalisation. Let R ⊆ ωd be a relation.
Say that R is independently generated if there is a finite set of partial
functions fki , k < d, of arity ni (only dependending on i) such that the
product functions (f0i , f1i , · · · , fd−1

i) (of arity ni) generate R from a finite
subset. The limiting case of d = 1 is trivial. Any countable subset of ω can
be generated; it suffices to pick one constant and a single unary function.
Thus, the case d = 2 is the first really interesting case. Notice also that
if there is a relation of arity d that is not independently generated, then
there is an example in any higher arity.

Notation. If f is a function and S a set, put f [S] := {f(x) : x ∈ S}.
Given L ⊆ ω2 we write Li for the “column” {j : (i, j) ∈ L}. It follows that
L =

∪
i∈ω{i} × Li. Dually we write jL := {i ∈ ω : (i, j) ∈ L}.

The notion of independence is restrictive. Let L ⊆ E×M be countably
infinite. Then there exists a finite subset F and a finite number of partial
functions on E × M (rather than independent functions on E and M)
generating L. Indeed, one constant plus a single unary function is enough.
Simply enumerate L = {(ei,mi) : i ∈ ω}, put F := {(e0,m0)} and let
f : E ×M → E ×M be defined by

f((e,m)) :=

{
(ei+1,mi+1) if (e,m) = (ei,mi)

(e,m) else

By assumption, i is unique in the first case. Then it is easily seen that
(ek,mk) = fk((e0,m0)), so we generate exactly L.

However, the question was whether it is possible to define the functions
in such a way that the actions on E and on M are independent of each
other. In the linguistic literature, two weaker notions have been discussed.
The most important one is compositionality. The first result will be that
all countable languages have a compositional grammar.

Since the set of generating functions is finite, L is at most countably
infinite. Thus we can restrict E and M to some countably infinite subset;
without loss of generality we can assume them to be the set of natural
numbers ω = {0, 1, 2, 3, · · · }. (Formally, there is nothing that distinguishes

K + K = 120 / p. 356 / May 3, 2019

356 Marcus Kracht – Tomasz Kowalski

members of E from members of M .) Thus, from now on E =M = ω. Let
p1 : ω

2 → ω : (i, j) 7→ i and p2 : ω2 → ω : (i, j) 7→ j.

Definition 1. Let f be a partial n-ary function on ω2. We say f is inde-
pendent in the first component if for all pairs (i0, j0), · · · , (in−1, jn−1)
and all pairs (i0, k0), · · · , (in−1, kn−1): f((i0, j0), · · · , (in−1, jn−1)) is de-
fined if and only if f((i0, k0), · · · , (in−1, kn−1)) is defined, and if any of
them is defined, then the first projection of the values are identical, i.e.,

p1(f((i0, j0), · · · , (in−1, jn−1))) = p1(f((i0, k0), · · · , (in−1, kn−1))).

Dually the notion of independence in the second component is defined.

Theorem 2. Let L ⊆ ω2. Then there is a finite set of functions generating
L from a finite subset where all functions are independent in the first
component. Likewise, the is a finite set of functions generating L from a
finite subset where all functions are independent in the second component.

Proof. Obviously, we need to prove only the first claim. The second
follows analogously. (Or instead, apply the method to L` := {(j, i) : (i, j) ∈
L} and then “switch” the solution.) Now, consider first the language

M := {(i, j) : Li ̸= ∅, j is minimal in Li}.

Clearly, M ⊆ L.
So M has the form M = {(i, ni) : i ∈ H} for some H ⊆ ω. Let α be

the least member of H, i.e., the least number such that Lα ̸= ∅. Introduce
a constant for (α, nα). Next, let k(i, j) be defined as follows. In case j = ni
and there is a q > i such that Lq ̸= ∅, let k(i, j) := (p, np), where p is the
smallest number > i such that Lp is nonempty. If no such number exists,
or if j ̸= ni, put k(i, j) := (i, j). Now put

d((i, j)) := (p, k(i, j))

This defines our first function. (A) d is independent in the first component
since p can be established from i alone. (B) L is closed under d. For given
(i, j) ∈ L, if d((i, j)) = (i, j) then obviously d((i, j)) ∈ L. If d((i, j)) ̸=
(i, j), then (i, j) = (i, ni) and d((i, j)) therefore has the form (p, np), where
by definition (p, np) ∈ M . (C) M is the closure of {(α, nα)} under d. We
prove by induction on i that all (i, ni) ∈M can be generated. For i = α this
is the case by assumption. Let i be given with (i, ni) ∈M . Then let p < i
be the largest number such that (p, np) ∈ M . By inductive hypothesis,
(p, np) is generated from {(α, nα)}. But (i, ni) = d((p, np)), so it is also
generated from {(α, nα)}.

K + K = 120 / p. 357 / May 3, 2019

Independently generated languages 357

Next, define a function ν as follows. Given i and j, ν(i, j) := j if either
j ̸∈ Li or j is the largest member of Li. Otherwise, ν(i, j) yields the least
j′ such that j′ ∈ Li and j′ > j. Now put

u((i, j)) := (i, ν(i, j))

(A) u is evidently independent in the first component. (B) L is closed under
u. For if (i, j) ∈ L and u((i, j)) = (i, j) then u((i, j)) ∈ L. Otherwise,
u((i, j)) = (i, ν(i, j)) = (i, j′), where among other j′ ∈ Li. So, u((i, j)) ∈
Li ⊆ L. (C) L is generated from M using u. This is proved by induction
on j. Choose (i, j) ∈ L. If j is minimal in Li then j = ni and the claim
trivially follows. Otherwise, choose j′ to be maximal such that (i, j′) ∈ L
and j′ < j. By inductive hypothesis, (i, j′) is generated from M using u.
But u((i, j′)) = (i, j), and so (i, j) is likewise generated from M using u.
�

Notice that we have been able to define total functions. Consider a
system F of generating (partial) functions on E×M . This system is called
compositional if each member f ∈ F is independent in the second com-
ponent; it is called autonomous if each member f ∈ F is independent in
its first component. We can rephrase the previous theorem as follows. A
language is compositional (autonomous) if it has a finite compositional
(autonomous) set of generating functions.

Corollary 3. Let L be a countable language.

• L is autonomous.

• L is compositional.

�
Here is a surprising consequence.

Corollary 4. Suppose that L is either many-to-one (=unambiguous) or
L is one-to-many. Then L is independently generated.

Proof. Consider the second case, i.e., assume that L is one-to-many
(the other case being dual). Let f :M → E be such that f(j) is the unique
i such that (i, j) ∈ L. Define the grammar as in the proof of Theorem 2.
Now put

d((i, j)) := (p, k(f(j), j))

as well as

u((i, j)) := (i, ν(f(j), j))

K + K = 120 / p. 358 / May 3, 2019

358 Marcus Kracht – Tomasz Kowalski

where k and ν are defined as before. By assumption, i = f(j), so that this
defines the same function. The so-defined functions do not depend on the
first component any more, and so are independent. �

Corollary 5. Let L ⊆ E ×M a language such that for some A ⊆ E,
B ⊆ M , L ∩ A × B is a many-to-one or one-to-many relation on A × B
containing an infinite partial bijection. Then L is independently generated.

Proof. We generate L∩A×B by means of independent partial func-
tions defined on A×B, as shown in Corollary 4. L contains a partial infinite
bijection {(ai, bi) : i < ω}. Let L−A×B = {(ei,mi) : i < ω}. Now add a
new unary partial function f : A×B → (E −A)× (M −B) with

f((x, y)) =

{
(ei,mi) if (x, y) = (ai, bi)

undefined else

By assumption, i is uniquely determined by x alone and by y alone, so f
is actually independent. �

The notion of independence for languages is not the conjunction of
autonomy and compositionality (if it were, all languages would be inde-
pendent, by Corollary 3); indeed, it is much stronger than that. For it says
that the language has an independent grammar, that is, a grammar where
every function is independent in both components. This is what we are
going to study now.

3. Basic results

In using partial functions, here is a trick that will be used on several
occasions. Denote by [F]P the closure of F under P . Let A be the disjoint
union of B and C. Let P be a set of partial functions on B, and Q a
set of partial function on C. Take B0 ⊆ B and C0 ⊆ C. Then [B0 ∪
C0]P∪Q = [B0]P ∪ [C0]Q. To see that notice that functions from P are
undefined on every tuple containing elements from C, and functions from
Q are undefined on every tuple containing an element from B. Therefore,
functions from P cannot act on outputs of functions from Q, and vice
versa.
Lemma 6. Let L ⊆ ω2, and ω = E′ ∪ E′′, with E′ and E′′ disjoint, and
let M ⊆ ω. Now put L′ := L ∩ E′ ×M , L′′ := L ∩ E′′ ×M . Then if both
L′ and L′′ are independently generated, so is L ∩ ω ×M .

Indeed, simply take the (disjoint) union of the constants and functions.
The following two claims are obvious.

K + K = 120 / p. 359 / May 3, 2019

Independently generated languages 359

Lemma 7. If L is independently generated, so is L` := {(j, i) : (i, j) ∈ L}.

Lemma 8. Let π, ρ : ω → ω be injections. Let (π, ρ)[L] := {(π(e), ρ(m)) :
(e,m) ∈ L}. Then (π, ρ)[L] is independently generated iff L is indepen-
dently generated.

There is a special corollary of this theorem that is worth stating
separately. Consider the case where Li = ∅ for certain i. Denote by
U := {i : Li ̸= ∅}. If U is infinite there is a bijection ν : U → ω. Consider
the language L• := (ν, idM)[L]. We have (L•)i = Lν(i) ̸= ∅ for all i ∈ ω.

Corollary 9. L• is independently generated iff L is.

If U is finite, L is independently generated anyway, by the next the-
orem.

Lemma 10. Let n be a finite number.

1. Every finite language is independently generated.

2. n× n is independently generated.

3. ω × ω is independently generated.

4. ω × n, n× ω are independently generated.

5. Every cofinite subset of ω × ω is independently generated.

Proof. The first claim is easy. Just introduce a constant for every
element of L. The second claim follows immediately. To show the third
claim introduce a constant for (0, 0), and two unary functions: one sending
(i, j) to (i + 1, j), and one sending (i, j) to (i, j + 1). The fourth claim
is proved thus. For each j < n take a constant for (0, j). Finally, add a
single unary function sending (i, j) to (i + 1, j). For the last claim, let
L = ω × ω − {(ik, jk) : k < n}. Put E0 := {ik : k < n}, E1 := ω − E0;
M0 := {jk : j < n},M1 := ω−M0. Now L∩E0×M0 is finite; L∩E0×M1 =
E0×M1, L∩E1×M0 = E1×M0, and L∩E1×M1 = E1×M1. The first
is independently generated since it is finite. The others are independently
generated because they are a simple product of at most countable sets.
Now use Lemma 6. �

Say that L is essentially bounded if L ⊆ n× ω or L ⊆ ω × n.

Lemma 11. Every essentially bounded language is independently gener-
ated.

K + K = 120 / p. 360 / May 3, 2019

360 Marcus Kracht – Tomasz Kowalski

Proof. >From Lemma 10 by repeated application of Lemma 6. �
Next we are going to reduce the problem even further. Let H ⊆ ω

such that for every i ∈ H there is a j ̸∈ H and Lj = Li. Then put

L−H := {(i, j) : (i, j) ∈ L, i ̸∈ H}

Lemma 12. If L−H is independently generated then L is independently
generated.

Proof. Suppose that L−H is independently generated. For j ̸∈ H put

Bj := {k : k ∈ H,Lk = Lj}

Now let h : ω → ω be defined as follows. If j ̸∈ H and Bj = ∅ then
h(j) := j. If j ̸∈ H and Bj ̸= ∅, then let h(j) := minBj . Else, if j ∈ H
then j ∈ Bi for some i. If j = maxBi, put h(j) := j, otherwise let h(j) be
the least j′ ∈ Bi such that j′ > j. Finally, let f be defined by

f((i, j)) := (h(i), j)

(A) f is independent. (B) L is closed under f . Consider (i, j) ∈ L. If
f((i, j)) = (i, j) then f((i, j)) ∈ L. Otherwise, f((i, j)) = (h(i), j), where
by definition Lh(i) = Li. Thus, (h(i), j) ∈ Lh(i) and so (h(i), j) ∈ L. (C) L
is generated from L−H using f . If not, let i be minimal such that for some
j, (i, j) ∈ L but it is not generated from L−H using f . Then i ∈ H. Let i′
the largest number such that i′ < i and i′ ∈ H if it exists, else let i′ ̸∈ H
such that i = minBi′ . By definition, i = h(i′). It is easily seen that (i′, j)
is generated from L−H using f ; the same is now true for (i, j). �

Thus we can restrict our search for nonindependent languages to those
subsets of ω2 where all columns are different and all rows are different.

4. Main theorems

We are going to investigate three conditions under which languages are
independently generated. The second and third conditions both generalise
the first, in slightly different directions. Examples will show that the gen-
eralisations are proper.

Definition 13. Let L ⊆ ω × ω. Say that L is n-discriminable if there
is a family {Ai : i ∈ ω} of sets such that:

1. for each i: 0 < |Ai| ≤ n;

2. for each i, j: if i ̸= j then Ai ̸= Aj;

K + K = 120 / p. 361 / May 3, 2019

Independently generated languages 361

3. for every i: Ai ⊆ Li; and

4. for every i, j Aj ⊆ Li if and only if j = i.

In that case, we call the family {Ai : i ∈ ω} an n-discriminating family
for L. (Notice that 4. implies 3.)

Notice that by definition, Ai * Aj for i ̸= j. For if Ai ⊆ Aj we have
Ai ⊆ Aj ⊆ Lj , from which by definition i = j.

Theorem 14. Let L be n-discriminable. Then L is independently gener-
ated.

Proof. Let {Ai : i ∈ ω} be a discriminating family for L. Let Ai be
a sequence of length n that enumerates Ai, possibly repeating an element
to reach length n. (Eg if n = 4 and A2 = {3, 6, 7} then A2 = ⟨3, 6, 7, 7⟩
is a possible choice.) For each member of {(0, i) : i ∈ A0} we introduce a
constant. Now we define the following n-ary functions fk, k < n. Let h be
the kth member of Ai+1.

fk((i, j0), (i, j1), · · · , (i, jn−1)) :=

{
(i+ 1, h) if ⟨j0, j1, · · · , jn−1⟩ = Ai

undefined else (1)

Clearly this function is independent: on the first component it gives i+1 if
all arguments are identical to i and is undefined otherwise. On the second
component it gives h if the arguments are exactly given as in Ai, and is
undefined else. The partiality seems to be essential here.

Now define a single n + 1-ary function g with the following action.
For each i we assume Li − Ai to be enumerated as {kij : j < κi} where
κi < ω + 1 (so κi can be finite or = ω).

g((i, j0), (i, j1), · · · , (i, jn)) :=



(i, ki0) if ⟨j0, j1, · · · , jn−1⟩ = Ai

and jn = jn−1, κi ̸= 0

(i, kip+1) if ⟨j0, j1, · · · , jn−1⟩ = Ai

and jn = kip, p+ 1 < κi

undefined else

(2)

So defined g is independent. On the first coordinate the output is i if all
inputs equal i; and is undefined elsewhere. On the second coordinate it
yields the next element in the enumeration if there is one (and repeats the
element if it is the last in the enumeration), provided the first n arguments
equal Ai; and is undefined elsewhere.

It now remains to be shown that this set of functions generates exactly
L. There are two parts: (i) the functions generate all of L; (ii) L is closed
under the functions.

K + K = 120 / p. 362 / May 3, 2019

362 Marcus Kracht – Tomasz Kowalski

To prove (i), we shall first show that all {i} ×Ai are generated using
the fk and the constants. Recall that all members of {0}×A0 are values of
some constant. Now by induction assume that {i}×Ai is generated. Thus
all pairs (i, jp) exist, p < n, where jp ∈ Ai. Then, using the functions fk,
we can generate (i + 1, h), where h is the kth member of Ai+1. Since all
elements of Ai+1 appear at least once in Ai+1, all of {i+1}×Ai+1 is thus
generated. Next we show that for every i, {i}×Li is generated from {i}×Ai

using the function g. To that end, recall that Li−Ai is enumerated as ki0, ki1
and so on for indices in κi. If κi = 0, nothing needs to be done. If κi > 0,
we get (i, ki0) as the value of g((i, j0), (i, j1), · · · , (i, jn−1), (i, jn−1)), and
(i, kip+1) as the value of g((i, j0), (i, j1), · · · , (i, jn−1), (i, k

i
p)). By induction,

all values are generated.
Finally, we need to show that L is closed under the functions. Consider

fk((i0, j0), (i1, j1), · · · , (in−1, jn−1))

This is defined only if i := i0 = i1 = · · · = in−1 and ⟨j0, j1, · · · , jn−1⟩ =
Aq for some q. We have q = i, since {i} × Ap ⊆ L only if p = i
by definition of n-discrimination. So, the function is defined only on
fk((i, j0), (i, j1), · · · , (i, jn−1)), where ⟨j0, · · · , jn−1⟩ = Ai, and yields the
value (i + 1, j′k), where j′k is the kth member of Ai+1. By definition, this
is in L. Next, consider

g((i0, j0), · · · , (in, jn))

This is defined only if i := i0 = i1 = · · · = in. Additionally, like in the
case of fk, the sequence ⟨j0, j1, · · · , jn−1⟩ must equal Ai. Hence we have
to look at

g((i, j0), (i, j1), · · · , (i, jn))

Several cases arise. (a) jn = jn−1. In that case we get (i, ki0), provided that
κi > 0. In that case, Li − Ai is nonempty, and contains ki0 by definition.
(b) jn = kip, where kip is a member of Li−Ai. In fact, it is the pth member
of the enumeration. If p + 1 = κi, then Li − Ai is exhausted, and g is
undefined. If not, we get (i, kip+1), which is in Li − Ai by definition. (c)
The function is undefined on all other inputs. In all cases, we get values in
L. The proof is complete. �

Corollary 15. Suppose that there exists an n such that for all i ∈ ω
|Li| ≤ n. Then L is independently generated.

Proof. By Lemma 12 we can reduce this to the case where for i ̸= j
Li ̸= Lj . Define I(j) := {i : |Li| = j} and Lj := ∪i∈I(j)Li. By Lemma 6,

K + K = 120 / p. 363 / May 3, 2019

Independently generated languages 363

we need to show only that each of the Lj is independently generated. To
this end, it is enough to show that {Lj

i : i ∈ I(j)} is a j-discriminating
family. This is easy to verify. �

As an application, consider the language L = {(i, i), (i, i2) : i ∈ ω}.
Here we can simply take Ai := Li. Indeed, this is a 2-discriminating family.
For |Ai| ≤ 2, the sets are nonempty, pairwise distinct ({i, i2} = {j, j2} iff
i = j), and, finally, if {i, i2} ⊆ Lj then j = i; for if {i, i2} = {j, j2}
then either the sets contain both two members, and then since i < i2,
j < j2 we have i = j; or they contain one member and then have the form
{i} = {j}, from which again i = j. So, by the previous result the language
is independently generated.

A more complex example, to which this result cannot be applied,
though, is {(i, ik) : i, k ∈ ω}. It is a consequence of the next theorem that
this language is independently generated.

Definition 16. Call a language weakly n-discriminable if there is a
family {Ai : i ∈ ω} of sets such that

1. for every i, 0 < |Ai| ≤ n;

2. for every i, j: if i ̸= j then Ai ̸= Aj; and

3. for every i, Ai ⊆ Li; and

4. for every i, j: if Aj ⊆ Li then Li ⊆ Lj. (This is trivially true if
i = j.)

In particular, if Ai ⊆ Aj then we must have Lj ⊆ Li. Clearly, all n-
discriminable languages are also weakly n-discriminable, but the converse
does not hold, as the example just given shows. For if L is n-discriminable,
we must have Li * Lj for all i ̸= j. (For if i ̸= j and Li ⊆ Lj , then
since Ai ⊆ Li we also have Ai ⊆ Lj , which is excluded.) But the language
{(i, ik) : i, k ∈ ω} fails this: we have L2 ⊆ L4. On the other hand, the family
defined by Ai := {i, i2} is a weakly discriminating family. For if Ai ⊆ Lj

then i = jp for some p, whence Li = {ik : k ∈ ω} ⊆ {jp : p ∈ ω}. The next
theorem establishes that this language is independently generated.

Theorem 17. Let L be weakly n-discriminable. Then L is independently
generated.

Proof. Let M := {i : for no j < i: Aj = Ai}. Furthermore, let
B(i) = {j : Ai = Aj}. Thus, M consists of all minimal members of the

K + K = 120 / p. 364 / May 3, 2019

364 Marcus Kracht – Tomasz Kowalski

sets B(i). Now let m and n be unary partial functions with the follow-
ing action. m(j) is undefined if j is maximal in M , and otherwise it is
m(j) := min{k : k ∈M, j < k}. n(j) is undefined if j is maximal in B(j),
and n(j) := min{k : k ∈ B(j), k > j} otherwise.

We need three sets of functions in addition to constants for the mem-
bers of {0} × A0. The first contains the functions fk, k < n. Define the
sequences Ai as above, with the exception that we require Ai = Aj if
B(i) = B(j) (that is, if Ai = Aj).

fk((i, j0), (i, j1), · · · , (i, jn−1)) :=

{
(m(i), h) if i ∈M , ⟨j0, j1, · · · , jn−1⟩ = Ai

undefined else (3)

The second set consists of the hk, k < n.

hk((i, j0), (i, j1), · · · , (i, jn−1)) :=

{
(n(i), ik) ⟨j0, j1, · · · , jn−1⟩ = Ai

undefined else (4)

Finally, we define the function g as above:

g((i, j0), (i, j1), · · · , (i, jn)) :=



(i, ki0) if ⟨j0, j1, · · · , jn−1⟩ = Ai

and jn = jn−1, κi ̸= 0

(i, kip+1) if ⟨j0, j1, · · · , jn−1⟩ = Ai

and jn = kip, p+ 1 < κi

undefined else

(5)

These functions are independent.
Again, we need to show that (i) L is generated from the functions,

and (ii) L is closed under these functions. As for (i), we note that by
definition, we can generate all Ai where i ∈ M from {0} × A0. Next, we
can generate the {j} × Aj for all j ∈ B(j) just by applying the hk, since
we have generated its minimal members. Third, by using g we generate
the columns Li.

Now we show that L is also closed under the functions. Consider

fk((i0, j0), (i1, j1), · · · , (in−1, jn−1))

This is defined only if i := i0 = i1 = · · · = in−1 ∈M and ⟨j0, j1, · · · , jn−1⟩=
Aq for some q. By definition of M , for two numbers p, q ∈ M , Ap ̸= Aq,
and so q = i. The value (m(i), h) is in Am(i) by definition of fk. Next
consider

hk((i0, j0), (i1, j1), · · · , (in−1, jn−1))

This is defined only if i := i0 = i1 = · · · = in−1, and ⟨j0, j1, · · · , jn−1⟩ = Aq

for some q. The value is (n(i), jk); while jk is again in Aq, the new index
is n(i). However, by choice of the function n, An(i) = Ai, so we get a value

K + K = 120 / p. 365 / May 3, 2019

Independently generated languages 365

from An(q). Thus, these functions are only defined on
∪

q{q}×Aq and yield
values in that set.

Finally, we need to show that L is closed under g. Consider

g((i0, j0), · · · , (in, jn))

This is defined only if i := i0 = i1 = · · · = in and ⟨j0, · · · , jn−1⟩ = Aq for
some q. Now, suppose that Aq = {j0, · · · , jn−1} ⊆ Li. Then by assumption
on weak discriminability, Lq ⊆ Li. Hence, two cases arise. (i) q = i. Then
by definition of g, the value is in Li. (ii) p ̸= i. Then, since the value is in
Lq, and Lq ⊆ Li, it is also in Li. �

Definition 18. Call L boundedly discriminable if there are numbers
n and n′, an infinite set M ⊆ ω and a family {Ai : i ∈ M} of sets such
that the following holds:

1. for each i ∈M , |Ai| ≤ n;

2. for each i ∈M : Ai ⊆ Li;

3. for each i ∈ M , the set B(i) := {j : Ai ⊆ Lj} has at most n′
elements; and

4. for each i, j ∈M , i ̸= j, B(i) ∩B(j) = ∅.

Every n-discriminable language is boundedly discriminable; just takeM :=
ω. The sets B(i) each have only one member in this case, so n′ := 1.

Actually, it follows that for each i, j ∈ M , i ̸= j, Ai ̸= Aj . For if
i, j ∈ M and i ̸= j, the last clause implies j ̸∈ B(i), that is, Aj * Lj , so
that Aj ̸= Ai, since Ai ⊆ Li.

Notice that allowing M to be finite would not gain anything, as then
the set of indices would be finite, bounded by some multiple of |M |. So the
only remaining interesting case is where M is infinite. Moreover, we could
assume n = n′ to simplify the definition.

Theorem 19. Suppose that L is boundedly discriminable. Then L is in-
dependently generated.

Proof. Without loss of generality we may assume that all the i ∈M
are minimal in B(i); in particular, the least element of B(0) is 0 ∈ M . If
i ̸∈ M let j < i be the least element of B(i). Then j ∈ M and we put
Aj := Ai.

First we introduce constants for {0}×A0. Next we introduce functions
fk and hk, k < n, as in the previous proof. Finally, for k < n′, let zk be an

K + K = 120 / p. 366 / May 3, 2019

366 Marcus Kracht – Tomasz Kowalski

n+1-ary function, defined similar to g above. Let P (i, k) be the statement:
i is the kth number in B(i). As before, order the elements of Li − Ai for
each i ∈ ω, and align the elements of Ai in a sequence kij of length n.

zk((i, j0), (i, j1), · · · , (i, jn)) :=



(i, ki0) if ⟨j0, j1, · · · , jn−1⟩ = Ai

P (i, k) and jn = jn−1, κi ̸= 0

(i, kip+1) if ⟨j0, j1, · · · , jn−1⟩ = Ai

P (i, k) and jn = kip, p+ 1 < κi

undefined else

(6)

It remains that to show that (i) the functions generate L, (ii) L is closed
under these functions. (i) is reasonably clear. We generate Ai, i ∈ M ,
using the functions fk, and then all the Ai using the gk as in the previous
proof. Finally, the zk allow to generate all of Li for P (i, k). Since for each
number i there is a k < n′ such that P (i, k), we generate Li from Ai using
zk essentially as we used g. Now on to (ii). Closure under fk. Consider

fk((i0, j0), (i1, j1), · · · , (in−1, jn−1))

This is defined only if i := i0 = i1 = · · · = in−1 ∈ M and ⟨j0, · · · , jn−1⟩ ∈
Ai; and in that case it yields the kth member of Aj , j the next member of
M . Closure under hk. Pretty much as in the previous proof. Closure under
zk. Consider

zk((i0, j0), (i1, j1), · · · , (in, jn))

If this is defined, i := i0 = i1 = · · · = in, i is the kth member of B(i), and
Aq = ⟨j0, · · · , jn−1⟩ for some q. If zk is defined, we know from q alone the
identity of i. Thus, Li is known in the second component. Now if Aq ⊆ Li,
then q ∈ B(i) and so Aq = Ai. Now by assumption either jn = jn−1,
and we get the least member of Li − Ai according to the enumeration (if
κi > 0). Or else we get the next member according to the enumeration. �

5. Progressive functions

The method has so far been to enumerate L by going through the Li in
increasing order. The interest in this method stems from using grammars
to generate languages. We think of a grammar as producing complex ex-
pressions from less complex expressions. In that sense, a formation step
produces a strictly more complex expression. Consider now an ordering
of the E of expressions in increasing complexity. Extend this to a linear
order, and number the expressions with natural numbers. We expect now
that the meaning of expression j is produced from some of the expressions
0, 1 · · · , j − 1. This way of generating expressions is called progressive.

K + K = 120 / p. 367 / May 3, 2019

Independently generated languages 367

Definition 20. Let f be a partial n-ary function on ω. A point of pro-
gressivity is a vector x⃗ such that f(x⃗) > max1≤i≤n xi (henceforth simply
written max x⃗). A point of stagnation is a vector x⃗ such that f(x⃗) =
max x⃗. A point of regression is a vector x⃗ such that f(x⃗) < max x⃗. f is
called strictly progressive if it has no points of stagnation or regression.
f is weakly progressive if it has no points of regression. Finally, a set
of functions is strictly or weakly progressive if all its members are.

We extend this now to functions on ω2 as follows. If f is an indepen-
dent function on ω2 then it has the form (f1(x⃗), f2(y⃗)). We say that f is
(strictly, weakly) progressive if f1 is.

The functions in the previous proofs have generally been weakly pro-
gressive. The following theorem shows why we cannot strengthen this to
strongly progressive functions.

Theorem 21. There is a L ⊆ ω2 which cannot be generated by a finite
strictly progressive set of independent partial functions.

Proof. Suppose that F is a finite set of strictly progressive indepen-
dent partial functions. Let γ be the cardinality of F , and ζ the maximal
arity of these functions. We may wlog assume that γ = ζ. Then by pro-
gressivity, a member from Li is obtained by applying a function to the
members of

∪
j<i Lj . If their number is bounded by ki, then there are at

most ζkζi elements. Thus, choose the following sequence of numbers.
ρ0 :=1

ρi+1:=(i+ 1)ρi+1
i

This sequence is strictly increasing. Moreover, for each choice of γ and ζ
there is i such that

ρi+1 > γ

∑
j≤i

ρi

ζ

To see this, note that
∑

j≤i ρi ≤ iρi ≤ ρ2i , since ρi > i (except for i =
0, 1, 2). Then

ρ2ζ+1 = (2ζ + 1)ρ2ζ+1
2ζ > (2ζ + 1)

∑
j≤i

ρ2ζ

ζ

Now define

L := {(i, j) : j < ρi}

K + K = 120 / p. 368 / May 3, 2019

368 Marcus Kracht – Tomasz Kowalski

Then |Li| = ρi for all i. It follows that for i = 2ζ +1 there are not enough
functions to generate the elements of L2ζ+1 for the elements with lower
index. �

6. Conclusion

We have shown that all countable languages are compositional and au-
tonomous. Moreover, some results have been obtained concerning lan-
guages that are independently generated. However, it is open whether
all countable languages are independently generated. It is also unclear
whether or not allowing partial functions rather than total functions makes
a difference.

The conjecture is that there exist nonindependent countable lan-
guages. However, no example has been found.

References

Barker, C. and P. Jacobson (eds.). 2007. Direct compositionality. Oxford: Oxford University
Press.

Hinzen, W., E. Machery and M. Werning (eds.). 2012. Handbook of compositionality.
Oxford: Oxford University Press.

Janssen, T. M. V. 1997. Compositionality. In J. van Benthem and A. ter Meulen (eds.)
Handbook of logic and language. Amsterdam & Cambridge, MA: Elsevier & MIT
Press. 417–473.

Kracht, M. 2011. Interpreted languages and compositionality. Springer: Dordrecht.

