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ABSTRACT

We analyze whether different sense vectors of the same word form in
multi-sense word embeddings correspond to different concepts. On the
more technical side of embedding-based dictionary induction, we also
test whether the orthogonality constraint and related vector prepro-
cessing techniques help in reverse nearest neighbor search. Both ques-
tions receive a negative answer.

Word sense induction (WSI) is the task of discovering senses of words
without supervision (Schütze 1998). Recent approaches include multi-sense
word embeddings (MSEs), i.e., vector space models of word distribution
with more vectors for ambiguous words. In MSEs, each vector is sup-
posed to correspond to a different word sense, but in practice models fre-
quently have different sense vectors for the same word form without an
interpretable difference in meaning.

In Borbély et al. (2016), we proposed a cross-lingual method for the
evaluation of sense resolution in MSEs. The method is based on the princi-
ple that words may be ambiguous to the extent to which their postulated
senses translate to different words in some other language. For the transla-
tion of words, we applied the method by Mikolov et al. (2013b) who train a
translation mapping from the source language embedding to the target as
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a least-squares regression supervised by a seed dictionary of the few thou-
sand most frequent words. The translation of a source word vector is the
nearest neighbor of its image by the mapping in the target space. In the
multi-sense setting, we have translated from MSEs. (The target embedding
remained single-sense.)

Section 1 discusses our linguistic motivation and section 2 introduces
MSEs. In section 3, we elaborate on the cross-lingual evaluation. Part
of the evaluation task is to decide on empirical grounds whether differ-
ent good translations of a word are synonyms or translations in different
senses. Reverse nearest neighbor search, the orthogonality constraint on
the translation mapping, and related techniques are also discussed. Section
4 offers experimental results with quantitative and qualitative analysis. It
should be noted that our evaluation is not very strict, but rather a process
of looking for something conceptually meaningful in present-day unsuper-
vised MSE models. We make our Hungarian multi-sense embeddings1 and
the code for these experiments2 available on the web.

1. Towards a less delicious inventory

We emphasize that our evaluation proposal probes an aspect of MSEs,
semantic resolution, which is not well measured by the well-known word
sense disambiguation (WSD) task that aims at classifying occurrences of
a word form to different elements of a sense inventory pre-defined by some
experts. Our goal in WSI is to probe the granularity of the inventory
itself. The differentiation of word senses, as already noted in Borbély et al.
(2016), is fraught with difficulties, especially when we wish to distinguish
homophony, i.e., using the same written or spoken form to express different
concepts, such as Russian mir ‘world’ and mir ‘peace’ from polysemy,
where speakers feel that the two senses are very strongly connected, such
as in Hungarian nap ‘day’ and nap ‘sun’.

The goal of WSI can be set at two levels. We may more modestly
aim to distinguish homophony from polysemy. Ideally, we could even dif-
ferentiate between metonymy and metaphor, two subtypes of polysemy,
discussed in more detail in the next section.

1 https://hlt.bme.hu/en/publ/makrai17
2 https://github.com/makrai/wsi-fest
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finom
durva

finom
ízletes

fine
coarse

delicious
tasty

Figure 1: Linear translation of word senses. The Hungarian word finom is am-
biguous between ‘fine’ and ‘delicious’.

1.1. Lexicographic background

Lexical ambiguity is linguistically subdivided into two main categories:
homonymy and polysemy (Cruse 2004). Homonymous words have seman-
tically unrelated and mutually incompatible meanings, such as punch1,
which means ‘a blow with a fist’, and punch2, which means ‘a drink’. Some
have described such homonymous word meanings as essentially distinct
words that accidentally have the same phonology (Murphy 2002). Polyse-
mous words, on the other hand, have semantically related or overlapping
senses (Cruse 2004; Jackendoff 2002; Pustejovsky 1995), such as mouth
meaning both ‘organ of body’ and ‘entrance of cave’.

Two criteria have been proposed for the distinction between homonymy
and polysemy. The first criterion has to do with the etymological derivation
of words. Words that are historically derived from distinct lexical items
are taken to be homonymous. However, the etymological criterion is not
always decisive. One reason is that there are many words whose historical
derivation is uncertain. Another reason is that it is not always very clear
how far back we should go in tracing the history of words (Lyons 1977).

The second criterion for the distinction between homonymy and poly-
semy has to do with the relatedness/unrelatedness of meaning. The distinc-
tion between homonymy and polysemy seems to correlate with the native
speaker’s feeling that certain meanings are connected and that others are
not. Generally, unrelatedness in meaning points to homonymy, whereas
relatedness in meaning points to polysemy. However, in a large number of
cases, there does not seem to be an agreement among native speakers as
to whether the meanings of the words are related. So, it seems that there
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is not a clear dichotomy between homonymy and polysemy, but rather
a continuum from ‘‘pure’’ homonymy to ‘‘pure’’ polysemy (Lyons 1977).

Most discussions about lexical ambiguity, within theoretical and com-
putational linguistics, concentrate on polysemy, which can be further di-
vided into two types (Apresjan 1974; Pustejovsky 1995). The first type of
polysemy is motivated by metaphor (irregular polysemy). In metaphorical
polysemy, a relation of analogy is assumed to hold between the senses of
the word. The basic sense of metaphorical polysemy is literal, whereas its
secondary sense is figurative. For example, the ambiguous word eye has the
literal basic sense ‘organ of the body’ and the figurative secondary sense
‘hole in a needle.’ The other type of polysemy is motivated by metonymy
(regular polysemy). In metonymy, the relation that is assumed to hold
between the senses of the word is that of contiguity or connectedness.
In metonymic polysemy, both the basic and the secondary senses are lit-
eral. For example, the ambiguous word chicken has the literal basic sense
referring to the animal and the literal secondary sense of the meat of
that animal.

2. Multi-sense word embeddings

Vector-space language models with more vectors for each meaning of a
word originate from Reisinger & Mooney (2010). Huang et al. (2012)
trained the first neural-network-based MSE. Both works use a uniform
number of clusters for all words that they select before training as poten-
tially ambiguous. The first system with adaptive sense numbers and an ef-
fective open-source implementation is a modification of skip-gram (Mikolov
et al. 2013c), multi-sense skip-gram by Neelakantan et al. (2014), where
new senses are introduced during training by thresholding the similarity
of the present context to earlier contexts.

Bartunov et al. (2016) and Li & Jurafsky (2015) improve upon the
heuristic thresholding by formulating text generation as a Dirichlet pro-
cess. In AdaGram (Bartunov et al. 2016), senses may be merged as well
as allocated during training. mutli-sense skip-gram3 (Li & Jurafsky 2015)
applies the Chinese restaurant process formalization of the Dirichlet pro-
cess. neela, AdaGram, and mutli have a parameter for semantics resolution
(more or less senses): λ, α, and γ, respectively.

3 Note the l ↔ t metathesis in the name of the repo which is the only way of distin-
guishing it from the other two multi-sense skip-gram models.
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MSEs are still in the research phase: Li & Jurafsky (2015) demonstrate
that, when meta-parameters are carefully controlled for, MSEs introduce a
slight performance boost in semantics-related tasks (semantic similarity for
words and sentences, semantic relation identification, part-of-speech tag-
ging), but similar improvements can also be achieved by simply increasing
the dimension of a single-sense embedding.

3. Linear translation from MSEs

Mikolov et al. (2013b) discovered that embeddings of different languages
are so similar that a linear transformation can map vectors of the source
language words to the vectors of their translations.

The method uses a seed dictionary of a few thousand words to learn
translation as a linear mapping W : Rd1 → Rd2 from the source (monolin-
gual) embedding to the target: the translation zi ∈ Rd2 of a source word
xi ∈ Rd1 is approximately its image Wxi by the mapping. The translation
model is trained with linear regression on the seed dictionary

min
W

∑
i

||Wxi − zi||2

and can be used to collect translations for the whole vocabulary by choos-
ing zi to be the nearest neighbor (NN) of Wxi. We follow Mikolov et al.
(2013b) in (i) using different metrics, Euclidean distance in training and
cosine similarity in collection of translations, and in (ii) training the source
model with approximately three times greater dimension than that of the
target embedding.

In a multi-sense embedding scenario, Borbély et al. (2016) take an
MSE as the source model, and a single-sense embedding as target. The
quality of the translation has been measured by training on the most fre-
quent 5k word pairs and evaluating on another 1k seed pairs.

3.1. Reverse nearest neighbor search

A common problem when looking for nearest neighbors in high-dimensional
spaces (Radovanović et al. 2010; Suzuki et al. 2013; Tomašev & Mladenic
2013), and especially in embedding-based dictionary induction (Dinu et al.
2015; Lazaridou et al. 2015) is when there are hubs, data points (target
words) returned as the NN (translation) of many points (Wxs), resulting in
incorrect hits (translations) in most of the cases. Dinu et al. (2015) attack
the problem with a method they call global correction. Here, instead of
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the original NN, which we will call forward NN search to contrast with the
more sophisticated method, they first rank source words by their similarity
to target words. In reverse nearest neighbor (rNN) search, source words
are translated to the target words to which they have the lowest (forward)
NN rank.4

In reverse NN search, we restricted the vocabulary to the some tens
of thousands of the most frequent words. We introduced this restriction
for memory saving, because the |Vsr| × |Vtg| similarity matrix has to be
sorted column-wise for forward and row-wise for reverse ranking, so at
some point of the computation we keep the whole integer matrix of forward
NN ranks in memory. It turned out that the restriction makes the results
better: a vocabulary cutoff of 215 = 32768 both on the source and the
target size yields slightly better results (74.3%) than the more ambitious
216 = 65536 (73.9%). This is not the case for forward NN search, where
accuracy increases with vocabulary limit (but remains far below that of
reverse NN).

3.2. Orthogonal restriction and other tricks

Xing et al. (2015) note that the original linear translation method is the-
oretically inconsistent due to its being based on three different similarity
measures: word2vec itself uses the dot-product of unnormalized vectors,
the translation is trained based on Euclidean distance, and neighbors are
queried based on cosine similarity. They make the framework more coher-
ent by length-normalizing the embeddings, and restricting W to preserve
vector length: their matrixW is orthogonal, i.e., the mapping is a rotation.
Faruqui & Dyer (2014) achieve even better results by mapping the two em-
beddings to a lower-dimensional bilingual space with canonical correlation
analysis. Artetxe et al. (2016) analyze elements of these two works both
theoretically and empirically, and find a combination that improves upon
dictionary generation and also preserves analogies Mikolov (2013d) like

woman+ king−man ≈ queen
among the mapped points Wxi. They find that the orthogonality con-
straint is key to preserve performance in analogies, and it also improves
bilingual performance. In their experiments, length normalization, when
followed by centering the embeddings to 0 mean, obtains further improve-
ments in bilingual performance without hurting monolingual performance.

4 If more target words have the same forward rank, Dinu et al. (2015) make the decision
based on cosine similarity. This tie breaking has not proven useful in our experiments.
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4. Experiments

4.1. Data

We trained neela, AdaGram and mutli models on (original and stemmed5

forms of) two semi-gigaword (.7–.8 B words) Hungarian corpora, the Hun-
garian Webcorpus (Webkorpusz, Halácsy et al. 2004) and (the non-social-
media part of) the Hungarian National Corpus (HNC, Oravecz et al. 2014).
We used Wiktionary as our seed dictionary, extracted with wikt2dict6

(Ács et al. 2013). We tried several English embeddings as target, including
the 300 dimensional skip-gram with negative sampling model GoogleNews
released with word2vec (Mikolov et al. 2013a),7 and those released with
GloVe (Pennington et al. 2014).8 We report the best results, which were
obtained with the release GloVe embeddings trained on 840 B words in
300 dimensions.

4.2. Orthogonal constraint

We implemented the orthogonal restriction by computing the singular
value decomposition

UΣV = S⊤
t Tt

where St and Tt are the matrices consisting of the embedding vectors of
the training word pairs in the source and the target space respectively, and
taking

W = U1V
where 1 is the rectangular identity matrix of appropriate shape.

Table 1 (overleaf) shows the effect of these factors. Precision in forward
NN search follows a similar trend to that in Xing et al. (2015) and Artetxe
(2016): the best combination is an orthogonal mapping between length-
normalized vectors; however, centering did not help in our experiments.
Reverse NNs yield much better results than the simpler method, but none
of the orthogonality-related techniques give further improvement here. The
cause of reverse NN’s apparent insensitivity to length may be the topic of
further research.

5 Follow-up work reported in section 4.5 applied a third option in preprocessing.
6 https://github.com/juditacs/wikt2dict
7 https://code.google.com/archive/p/word2vec/
8 https://nlp.stanford.edu/projects/glove/



K + K = 120 / p. 392 / February 1, 2020

392 Márton Makrai – Veronika Lipp

8192 16384 32768
general linear orthogonal general linear orthogonal general linear orthogonal

any disamb any disamb any disamb any disamb any disamb any disamb

fw
d

vanilla 28.7% 2.40% 32.1% 2.40% 36.2% 3.40% 42.0% 4.70% 36.7% 4.20% 44.5% 6.00%
normalize 28.2% 2.20% 33.7% 3.40% 35.1% 2.80% 44.4% 5.80% 36.6% 3.80% 48.2% 6.00%
+ center 26.6% 2.10% 32.8% 2.90% 32.9% 2.70% 42.0% 4.50% 34.6% 3.50% 43.9% 5.50%

re
v

vanilla 53.8% 11.85% 51.7% 11.37% 58.3% 11.99% 56.6% 12.59% 74.3% 23.60% 73.6% 22.30%
normalize 53.3% 11.61% 50.0% 10.90% 58.0% 12.35% 56.5% 12.59% 73.7% 24.20% 72.8% 22.10%
+ center 51.7% 11.37% 53.3% 11.14% 57.1% 11.99% 57.7% 12.35% 69.7% 22.20% 73.5% 23.00%

Table 1: Precision@10 of forward and reverse NN translations with and without
the orthogonality constraint and related techniques at vocabulary cut-
offs 8192 to 32768. any and disamb are explained in section 4.3. The
source has been an AdaGram model in 800 dimensions, α = .1, trained
on Webkorpusz with the vocabulary cut off at 8192 sense vectors.

4.3. Results

We evaluate MSE models in two ways, referred to as any and disamb. The
method any has been used for tuning the (meta)parameters of the source
embedding and to choose the target: a traditional, single-sense translation
has been trained between the first sense vector of each word form and
its translations. (If the training word is ambiguous in the seed dictionary,
all translations have been included in the training data.) Exploiting the
multiple sense vectors, one word can have more than one translation. Dur-
ing the test, a source word was accepted if any of its sense vectors had at
least one good translation among its k reverse nearest neighbors (rNN@k).

In disamb, we used the same translation matrix as in any, and in-
spected the translations of the different sense vectors to see whether the
vectors really model different senses rather than synonyms. The lowest re-
quirement for the non-synonymy of sense vectors s1, s2 is that the sets of
corresponding good rNN@k translations are different. The ratio of words
satisfying this requirement among all words with more than one sense vec-
tor is shown as disamb in Table 2.

The values in Table 2 are low. This can in part be due to that the
neela and the mutli models were trained with lower dimension than the
best-performing model, so results here are not comparable among these
different architectures. Follow-up experiments (conducted after the paper
review) are reported in section 4.5.
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dim α/γ p m any disamb

HNC 800 .02 100 48.5% 7.6%
neela Wk 300 – 2 big 54.0% 12.4%
HNC stem 800 .05 big 55.1% 10.4%
HNC 160 .05 3 200 62.2% 15.0%
mutli Wk 300 .25 71 62.9% 17.4%
Webkorpusz 800 .05 100 65.9% 17.4%
HNC 600 .05 5 100 68.6% 16.6%
HNC 600 .1 3 50 69.1% 18.8%
Webkorpusz 800 .1 100 73.9% 23.9%

Table 2: Our measures, any and disamb, for different MSEs. The source embed-
ding has been trained with AdaGram, except for when indicated other-
wise (neela, mutli). The meta-parameters are dimension, the resolu-
tion parameter (α in AdaGram and γ in mutli), the maximum number
of prototypes (sense vectors), and the vocabulary cutoff (min-freq, the
two models with big have practically no cut-off).

Table 3 (overleaf) shows the successfully disambiguated words sorted
by the cosine similarity s of good rNN@1 translations of different sense
vectors. (We found that most of the few cases when there are more than
two sense vectors with a good rNN@1 translation are due to the fact that
the seed dictionary contains some non-basic translation, e.g., kapcsolat
‘relationship, conjunction’ has ‘affair’ among its seed translations. In these
cases, we chose two sense vectors arbitrarily.) Relying on s is similar to
the monolingual setting of clustering the sense vectors for each word, but
here we restrict our analysis to sense vectors that prove to be sensible in
linear translation.

We see that most words with s < .25 are really ambiguous from a
standard lexicographic point of view, but the translations with s > .35
tend to be synonyms instead.
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s covg

E −0.04849 függő addict, aerial 0.4
S 0.01821 alkotó constituent, creator 0.5
S 0.05096 előzetes preliminary, trailer 1.0
S 0.0974 kapcsolat affair, conjunction, linkage 0.33
I 0.1361 kocsi coach, carriage 1.0
S 0.136 futó runner, bishop 1.0
S 0.1518 keresés quest, scan 0.67
S 0.1574 látvány outlook, scenery, prospect 0.6
S 0.1626 fogad bet, greet 1.0
S 0.1873 induló march, candidate 1.0
I 0.187 nemes noble, peer 0.67
E 0.1934 eltérés variance, departure 0.4
E 0.1943 alkalmazás employ, adaptation 0.33
S 0.2016 szünet interval, cease, recess 0.43
E 0.2032 kezdeményezés initiation, initiative 1.0
S 0.2052 zavar disturbance, annoy, disturb, turmoil 0.57
S 0.2054 megelőző preceding, preventive 0.29
IE 0.2169 csomó knotI , lumpI , matE 1.0
E* 0.21 remény outlook, promise, expectancy 0.6
S 0.2206 bemutató exhibition, presenter 0.67
E 0.2208 egyeztetés reconciliation, correlation 0.5
S 0.237 előadó auditorium, lecturer 0.67
E 0.2447 nyilatkozat profession, declaration 0.4
I 0.2494 gazda farmer, boss 0.67
I 0.2506 kapu gate, portal 1.0
I 0.2515 előbbi anterior, preceding 0.67
I 0.2558 kötelezettség engagement, obligation 0.67
E 0.265 hangulat morale, humour 0.5
E 0.2733 követ succeed, haunt 0.67
SE 0.276 minta normS , formulaE , specimenS 0.75
S 0.2807 sorozat suite, serial, succession 1.0
S 0.2935 durva coarse, gross 0.18
I 0.3038 köt bind, tie 0.67
E 0.3045 egyezmény treaty, protocol 0.67
I 0.3097 megkülönböztetés discrimination, differentiation 0.5
I 0.309 ered stem, originate 0.5
I 0.319 hirdet advertise, proclaim 1.0
E 0.3212 tartós substantial, durable 1.0
I 0.3218 ajánlattevő bidder, supplier, contractor 0.6
I 0.3299 aláírás signing, signature 0.67
I 0.333 bír bear, possess 1.0
I 0.3432 áldozat sacrifice, victim, casualty 1.0
IE 0.3486 kerület wardI , boroughI , perimeterE 0.3
I 0.3486 utas fare, passenger 1.0
I 0.3564 szigorú stern, strict 0.5
I 0.3589 bűnös sinful, guilty 0.5
I 0.3708 rendes orderly, ordinary 0.5
I 0.3824 eladó salesman, vendor 0.5
I 0.3861 enyhe tender, mild, slight 0.6
I 0.3897 maradék residue, remainder 0.33
I 0.3986 darab chunk, fragment 0.4
E 0.4012 hiány poverty, shortage 0.5
I 0.4093 kutatás exploration, quest 0.5
...

...
I 0.4138 tanítás tuition, lesson 0.67
I 0.4196 őszinte frank, sincere 0.67
I 0.4229 környék neighborhood, surroundings, vicinity 0.38
I 0.4446 ítélet judgement, sentence 0.67
I 0.4501 gyerek childish, kid 0.67
I 0.4521 csatorna ditch, sewer 0.4
I 0.4547 felügyelet surveillance, inspection, supervision 0.43
E 0.4551 ritka rare, odd 0.5
S 0.4563 szerető fond, lover, affectionate, mistress 0.67
I 0.4608 szeretet affection, liking 0.67
I 0.4723 vizsgálat inquiry, examination 0.67
I 0.4853 tömeg mob, crowd 0.5
I 0.4903 puszta pure, plain 0.22
I 0.4904 srác kid, lad 1.0
I 0.4911 büntetés penalty, sentence 0.29
I 0.4971 képviselő delegate, representative 0.67
I 0.4975 határ boundary, border 0.67
I 0.5001 drága precious, dear, expensive 1.0
S 0.5093 uralkodó prince, ruler, sovereign 0.5
I 0.5097 válás separation, divorce 0.67
I 0.5103 ügyvéd lawyer, advocate 0.67
I 0.5167 előnyös advantageous, profitable, favourable 1.0
I 0.5169 merev rigid, strict 1.0
I 0.5204 nyíltan openly, outright 1.0
I 0.5217 noha notwithstanding, albeit 1.0
I 0.5311 hulladék litter, garbage, rubbish 0.43
I 0.5311 szemét litter, garbage, rubbish 0.43
I 0.5612 kielégítő satisfying, satisfactory 1.0
E 0.5617 vicc joke, humour 1.0
I 0.5737 szállító supplier, vendor 1.0
I 0.5747 óvoda nursery, daycare, kindergarten 1.0
I 0.5754 hétköznapi mundane, everyday, ordinary 0.75
I 0.5797 anya mum, mummy 1.0
I 0.5824 szomszédos neighbouring, neighbour 0.4
E 0.5931 szabadság liberty, independence 1.0
I 0.6086 lelkész pastor, priest 0.4
I 0.6304 fogalom notion, conception 1.0
I 0.6474 fizetés salary, wage 0.67
I 0.6551 táj landscape, scenery 1.0
I 0.6583 okos clever, smart 0.67
I 0.6707 autópálya highway, motorway 0.5
I 0.6722 tilos prohibited, forbidden 1.0
I 0.6811 bevezető introduction, introductory 1.0
I 0.7025 szövetség coalition, alliance, union 0.75
I 0.7065 fáradt exhausted, tired, weary 1.0
I 0.7066 kiállítás exhibit, exhibition 0.67
I 0.7135 hirdetés advert, advertisement 1.0
I 0.7147 ésszerű rational, logical 1.0
I 0.7664 logikai logic, logical 1.0
I 0.7757 szervez organise, organize, arrange 1.0
I 0.8122 furcsa strange, odd 0.4
I 0.8277 azután afterwards, afterward 0.67
I 0.8689 megbízható dependable, reliable 0.67

Table 3: Hungarian words with the rNN@1 translations of their sense vectors.
The first column is a post-hoc annotation by András Kornai (E error in
translation, I identical, S separate meanings), s is the cosine similarity
of the translations, covg denotes the coverage of the @1 translations over
all gold (good) translations. *= the basic translation hope is missing.
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4.4. Part of speech

The clearest case of homonymy is when unrelated senses belong to different
parts of speech (POSs), and the translations reflect these POSs, e.g., nő
‘woman; increase’ or vár ‘wait; castle’.9 In purely semantic approaches,
like 4lang (Kornai 2018; Kornai et al. 2015), POS-difference alone is not
enough for analyzing a word as ambiguous, e.g., we see the only difference
between the noun and participle senses of alkalmazott, ‘employee; applied’
as employment being the application of people for work; in the case of belső
‘internal; interior’, the noun refers to the part of a building described by
the adjective.

More interesting are word forms with related senses in the same POS,
e.g., cikk, ‘item; article’ (an article is an item in a newspaper); eredmény,
‘score; result’ (a score is a result measured by a number); magas, ‘tall;
high’ (tall is used for people rather than high); or idegen, ‘strange, alien;
foreign’, where the English translations are special cases of ‘unfamiliar’
(person versus language).

4.5. Follow-up experiments

After the compilation of the Festschrift, we trained models that enable a
more fair comparison of AdaGram and mutli in terms of semantic reso-
lution: we trained 600-dimensional models for Hungarian to have the 2:1
ratio between the source and the target dimension that has been reported
to be optimal for this task (Mikolov et al. 2013b; Makrai in preparation).
This time we used the de-glutinized version (Borbély et al. 2016; Nemeskey
2017) of the Hungarian National corpus for better morphological general-
ization.

We can see in Table 4 (overleaf) that there is a trade-off between the
two measures, which may be interpreted to indicate that the more specific
a vector is, the easier it is to translate, but if the vectors are too specific,
then the translations may coincide.10

As a direction for future research, the analysis of the observed and
inferred number of word senses as a function of word frequency may shed
more light on how good a model of word ambiguity the Dirichlet Process is.

9 We note that some POSs in Hungarian have blurred borders, e.g., it is debatable
whether the nominal önkéntes ‘voluntary; volunteer’ is ambiguous for its POS.

10 There are two mutli models because Skip-gram and the related MSE models repre-
sent each word with two vectors, u and v in the formula p(wi | wj) ∝ exp(u⊤

i vj),
that mutli calls sense versus context vectors respectively.
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any disamb

AdaGram 73.3% 18.53%
mutli sense vectors 71.0% 19.46%
mutli context vectors 69.9% 20.76%

Table 4: The resolution trade-off between translation precision and sense dis-
tinctiveness. The source models are 600-dimensional Hungarian models
trained on the de-glutinized version of the Hungarian National Corpus.
Other meta-parameters have been set to default.
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us to be independent and effective. One of his remarkable citations is that “It’s easier to
ask forgiveness than it is to get permission”. The proverb is sometimes attributed to the
Jesuits, who are similar to András in having had a great impact on what I’ve become in
the past ten years. The real source of the proverb is Grace Hopper, a US navy admiral
who invented the first compiler. This paper is a step in my learning to be so effective as
the sources mentioned above.

András Kornai, besides the work already acknowledged, rated each item in Table 3.
I would like to thank the anonymous reviewer for detailed critique, both substantial and
linguistic, Mátyás Lagos for reviewing language errors, and Gábor Recski and Bálint Sass
for their useful comments. The orthogonal approximation was implemented following a
code11 by Gábor Borbély. Veronika Lipp’s contribution is section 1.1.
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