
K + K = 120 / p. 425 / May 3, 2019

K + K = 120: Papers dedicated to L. Kálmán & A. Kornai on the occasion of their 60th birthdays, pp. 425–443

Indefinite descriptions
in typed lambda calculus

ZOLTÁNMOLNÁR
Budapest University of Technology and Economics
mozow@math.bme.hu

KEYWORDS

lambda calculus
epsilon symbol
indefinite descriptions

ABSTRACT

The epsilon calculus seems to be an appropriate environment for mod-
elling the meaning of definite and indefinite descriptions in a natural
language. A philosopher of language may ask whether Russell’s mean-
ing theory on descriptions is applicable in this language or not. Or more
precisely, in what circumstances a sentence (containing an epsilon-
expression) has a contextual meaning, and what its logically equivalent
quantified reformulation is. The question was answered for first order
languages earlier, but the conditionswere full of technical complications
and the construction applied difficult semantics. In this paper, the ques-
tion is answered for a typed lambda calculus, in an easier way and by a
simpler semantics.

1. Introduction

1.1. Hilbert’s epsilon, descriptions and FOL

The first-order language (FOL) extended by the Hilbertian variable bind-
ing operator ε is possibly a good choice as an environment modelling a cou-
ple of formal linguistic and language philosophical phenomena concerning
descriptions.1 The term

(1) (εx)φ

where φ is a FOL formula and x is a variable, has the following intuitive
meaning:

(2) “an F , if there is any F at all”

1 See Slater (2007); Kneebone (1963, 100).



K + K = 120 / p. 426 / May 3, 2019

426 Zoltán Molnár

where predicate F is the intended meaning or the natural language trans-
lation of the formula φ. (Here, the notion of translation is due to Tarski.
In the present case, the object-language is FOL and the meta-language is
the natural language.2) The intuition above follows straightforward from
the first epsilon (or transfinite) axiom introduced by David Hilbert, which
is the following formula scheme

(∃x)φ(x)→ φ((εx)φ(x))

The intended meaning of the epsilon term shows that (εx)φ can be called
a conditional indefinite description, since “an F ” alone is an indefinite
description, with the addition of the conditional clause “there is any F
at all” it becomes a different linguistic entity with, perhaps, a different
meaning. Obviously, I do not have to mention that the meaning of the
phrase “an F ” is itself a problematic one. Therefore, the problem of the
semantic difference between “an F ” and “an F , if there is any F at all”
is also a tricky one. In the paper I am committed to the standpoint that
these phrases have the same meaning.

In order to show an application of Hilbert’s symbol let me provide a
formal reconstruction and analysis of the sentence

(3) The man drinking a martini is interesting-looking.

in FOL extended by ε (this extended language is denoted by FOL+ε).3
Since, FOL+ε does not contain definite descriptions, the phrase the man
drinking a martini can be seen as a special case of the use of ε. A pos-
sible solution is to add a uniqueness clause to the following formula:
“man drinking a martini(x)” (the formula in FOL+ε expressing the natural
language predicate …is a man and drinks a martini; see Slater 2009, 417):

(εx)(man drinking a martini(x) & (∀y)(man drinking a martini(y) ≡ (x = y))

Let us denote the term above by

(4) (εDx)man drinking a martini(x)

Then sentence (3) is formulated as follows:

(5) interesting-looking((εDx)(man drinking a martini(x)))

2 Cf. the notion of translation as applied in Convention T in (Tarski 1956, 188).
3 The original sentence can be found in Donnellan (1966).



K + K = 120 / p. 427 / May 3, 2019

Indefinite descriptions in typed lambda calculus 427

Let me remark again, that the claim that the phrase the man drinking a
martini can be expressed by (εDx)man drinking a martini(x) is not an obvi-
ous one, however a possibly good enough working hypothesis. Without a
man holding martini in his hand, the meaning of the man drinking a mar-
tini is as vague as the meaning of the phrase the man drinking a martini,
if anybody at all.

Accepting the hypothesis above, by sentence (3) one can refer to the
interesting-looking person in question, even if he holds a glass of water in
his hand. In this case, the semantic value of the term (4) is a person – not
drinking a martini – who seems to be interesting.

The problem of sentence (5) reminds one of Russell’s Theory of De-
scriptions (RTD). In Russell’s On Denoting or in Whitehead & Russell
(1910/1967) it is proposed that descriptions must not be treated as proper
names, but as incomplete parts of quatified sentences.

“Thus we must either provide a denotation in cases in which it is at first sight
absent, or we must abandon the view that the denotation is what is concerned
in propositions which contain denoting phrases.” (Russell 1905, 484)

“According to the view I advocate, a denoting phrase is essentially part of a
sentence, and does not, as like most single words, have any significance on its
own account.” (ibid., 488)

According to RTD, a description D, as a denoting phrase, is not inter-
changeable by an other individual name N which is identical to D, since
D is meaningless in separation, and has only contextual meaning. Russell
in On Denoting (Russell 1905) gives a FOL reformulation for sentences of
the form (3), but in the general case, when the natural language sentence
contains more than one descriptions or a lot of logical operators the FOL
reformulation can be carried out along different lines. One must mind the
scope of logical operators and descriptions. Hence, in the general case RTD
is appears to be a FOL reformulation program, in the spirit of the treat-
ment of the simple case described in Russell (1905). At this point, a bit
naive question arises.

(6) Is the closed formula (5) equivalent to a plain, quantified one?

If it is in general, then RTD, or rather its quantificational program, is ap-
plicable to FOL+ε, in the sense that an epsilon-term, containing a closed
formula, can be considered as incomplete part of a quantified reformu-



K + K = 120 / p. 428 / May 3, 2019

428 Zoltán Molnár

lation.4 If it is not equivalent in general, then for FOL+ε Donnellan’s
proposal holds (i.e., sometimes descriptions have separate meaning, too;
see Donnellan 1966). The answer to the question seems to be the latter.
The term (εx)φ is a referring one (its semantic value is always defined)
and its semantics is unproblematic, even if there is no φ, at least if the
reference of (εx)φ is not a φ. Nevertheless, note that RTD is a strategy
proposed to solved the problem ‘how to deal with descriptions’ and not a
(mathematical) thesis. In FOL+ε, (εx)φ is a proper name (in the sense of
Russell), hence the question must be rewritten in a weaker form. But what
will be this weakened question?

It is well-known that if the truth value of the sentence ψ((εx)φ) in
any model does not depend on the semantic value of (εx)φ, then there is a
FOL reformulation of ψ((εx)φ).5 Hence, if ψ((εx)φ) is an epsilon-invariant
formula (its semantic value is independent of the value of the containing
epsilon-term) then the term (εx)φ can be eliminated from ψ((εx)φ) by a
logically equivalent reformulation. The problem is that this plain FOL re-
formulation is not an explicit or transparent one. The proof of the theorem
applies Craig’s Interpolation Theorem, which is a pure existence theorem
not giving the needed explicit formula. Hence, in the light of the above
considerations, the relevant question is the following.

“Is there an explicit, transparent, well-explainable FOL reformulation of ψ((εx)φ),
provided that ψ((εx)φ) is epsilon-invariant (in some model)?”

For FOL+ε, the question has been positively answered in Molnár (2013),
however with the application of a lot of technical conditions. When one
changes FOL to lambda calculus the picture becomes much more clear. The
point is that, in FOL the substitution ψ[x/(εx)φ] is only a meta-language
operation, but in the lambda-calculus it is encoded into the object-language
via the applicationMN , whereM is an expression of the lambda-language
and N is an epsilon-term of the form (εx)P .

4 The crucial point in the tradition of RTD is not that what the FOL reformulation
is, but wheter there is any such reformulation. For instance, as Zvolenszky puts
the question: “Initially, at issue was the meaning of a specific, rather narrow class
of expressions, incomplete definite descriptions: are they devices of reference or of
quantification?” (Zvolenszky 2007, 1).

5 One can call it Caicedo’s Theorem or the Blass–Gurevich Theorem. Its proof first
presented in Caicedo (1995), but Blass and Gurevich (2000) claim before the theorem
(Prop. 3.2.) that the proposition is a folklore and “it is mentioned in Caicedo (1995)
without a reference”.



K + K = 120 / p. 429 / May 3, 2019

Indefinite descriptions in typed lambda calculus 429

1.2. Hilbert’s epsilon and the lambda operator

In section 2, a syntax and semantics will be given for the epsilon symbol in
the context of typed lambda calculus (TL). The syntactic notions will be
the well-known ones, but in the definitions different way will be followed,
based on labeled, ordered trees.6 Since, by the Curry–Howard Correspon-
dence, TL is closely related to the proof theory of the natural deduction
system of propositional logic, we make use of the possibility to define the
TL notions of TL syntax the same style as proofs. The form of the def-
initions will fit this doctrine and a tree-based method will be applied.

In section 3, it will be seen that in TL the result can be reached much
more faster than in FOL. There is no need to refer to the so-called in-
tensional and substitutional epsilon semantics.7 The strategy will be the
following. The typed lambda language extended by Hilbert’s epsilon (L∀ε

λ )
will be considered as a formal model of the fragment of the natural language
containing descriptions. Then, if it is possible, the epsilon expressions will
be eliminated and the sentences containing them will be mapped, in an
explicit way, to the epsilon-free quantified reduct L∀

λ of L∀ε
λ . The plain

lambda language reformulation will keep the logical truth in the model.
Giving Montague-semantics to the extended language and to the plain
epsilon-free language as models (the (M, f)-s and the M-s below, respec-
tively) the construction will be unproblematic.

Figure 1: Chain of fragments. The natural language, the λ-∀-ε expressible frag-
ment and the λ-∀ expressible fragment.

6 It is not easy to refer to a single book or paper, but the book Simmons (2000) (with
the programmatic subtitle “Taking the Curry–Howard Correspondence Seriously”)
surely uses the tree technique that I follow.

7 Note that, Ahrendt and Giese introduced several types of epsilon semantics. See
(Ahrendt & Giese 1999, Def. 4,5). In Molnár (2013) the substitutional semantics
was applied. Now, in TL the extensional semantics (see Molnár 2013, 821 or Monk
1976, Def. 29.23) will be enough.



K + K = 120 / p. 430 / May 3, 2019

430 Zoltán Molnár

In section 4, it will be pointed out that the result is not less effective
than the RTD proposed by Russell.

2. Syntax and semantics of typed lambda system with epsilon

2.1. Syntax

For building the syntax a tree-based method is chosen (parsing or con-
struction trees), which is much more transparent than the old-fashioned
character sequence technique. One thing to note is that here the trees grop
upward, as those used by by linguists in Combinatory Categorial Gram-
mar, or, what the main motivation is, in proof theory of the style used in
natural deduction.

The definitions below are basically combinations of the well-known
ones from Troelstra & Schwichtenberg (2000, Sec. 1) and from Sørensen &
Urzyczyn (1998).

The so called typeability relation (⊢) is a pure syntactic relation that
joins the expressions of the lambda calculus to types with respect to a
fixed set of typed variables called context. Of course, the relation ⊢ plays
a fundamental role in the Curry–Howard Isomorphism, which links the
lambda expressions to proof trees of the natural deduction system of the
implicational logic.

Definition 1. The language of types is the tuple LTyp = ⟨ι, o, (, ), [, ]⟩. The
set of its strings Str(LTyp) contains the finite sequences of the characters
from {ι, o, (, ), [, ]}. A construction tree Π of the string γ ∈ Str(LTyp) is a
finite, labeled, ordered tree such that the labels of Π are from Str(LTyp)
and

1. the labels of the leaves of Π come from the set {ι, o},
2. the branch nodes of Π (these are not leaves) and their labels are of

the form

[α(β)]

βα

3. the root of Π is γ.



K + K = 120 / p. 431 / May 3, 2019

Indefinite descriptions in typed lambda calculus 431

If there is a tree Π such that Π is a construction tree of α ∈ Str(LTyp),
then α is said to be a type (expression) in LTyp. The set of all types in
LTyp is denoted by Exp(LTyp). (Cf. Troelstra & Schwichtenberg 2000, Def.
1.2.1 (p. 9); Def. 1.1.7. (p. 7).)

Note that the construction tree of a type is unique. The construction tree
of the type α is denoted by Tree(α). The reference to brackets [, ] is avoided
when a type α is well-known and its construction tree can be completely
reconstructed without them.

Intuitively, ι is the type of individuals and o is the type of sentences.
The compound type o(ι) is, for example, the grammatical type of the
single-variable predicates.

Definition 2. A lambda language is a tuple Lλ = ⟨V,C, (, ), λ, [, ]⟩, where
V is an infinite and C is non-empty set and V is disjoint to C. Str(Lλ)
contains the finite sequences from V ∪C ∪{λ, (, ), [, ]}. A construction tree
Π of the M ∈ Str(Lλ) is a finite, labeled, ordered tree such that the labels
of Π are from Str(Lλ) and

1. the labels of the leaves of Π come from the set V ∪ C,
2. the branch nodes of Π and their labels are of the form

[P (Q)]

QP

[(λx)P ]

P

3. the root of Π is M .

If there is a tree Π such that Π is a construction tree of M ∈ Str(Lλ),
then M is said to be an expression in Lλ. The set of all expression in Lλ

is denoted by Exp(Lλ).
The elements of V are called the variables of Lλ and V is denoted by

Var(Lλ). The elements of C are the constants of Lλ and C is denoted by
Const(Lλ). (Cf. Troelstra & Schwichtenberg 2000, Def. 1.2.2 (p. 9); Def.
1.1.7. (p. 7).)

Note that the construction tree of an expression is unique. The construction
tree of the expression M is denoted by Tree(M). The height of Tree(M)
is defined by the well-known manner and is denoted by |Tree(M)|.

Referring to brackets [, ] is avoided when an expression M is known
and its construction tree can be completely reconstructed without them.



K + K = 120 / p. 432 / May 3, 2019

432 Zoltán Molnár

Definition 3. Let ⟨V,C, (, ), λ, [, ]⟩ be a lambda language. The tuple Lλ =
⟨V,C, (, ), λ, [, ], Z⟩ is a typed lambda language, if Z : C → Exp(LTyp). The
function Z is denoted by CnstTp(Lλ).

Definition 4. Let Lλ be a lambda language and let Ξ ⊆ Var(Lλ) be a
non-empty finite set. A function f : Ξ→ Exp(LTyp) is called a context, and
the set of all contexts is denoted by Cont(Lλ). (Ξ : Γ) ∈ Cont(Lλ) denotes
a function f with domain Ξ and range Γ. If f = (Ξ : Γ) is a context, and
x ∈ Ξ then (x : γ) denotes f(x) = γ.

For a typed lambda language Lλ the sets of variables, expressions, contexts
etc. defined and denoted by the same manner as for a lambda languages.

Definition 5. Let Lλ be a typed lambda language. By induction on the
height of the construction tree of the expressions, relation

(Ξ : Γ) ⊢M : φ

will be defined as follows for every context (Ξ : Γ) ∈ Cont(Lλ), expression
M ∈ Exp(Lλ) and type φ. ⊢ is called the typeability relation.

1. Let |Tree(M)| = 1.

a. If c ∈ Const(Lλ) and (Ξ : Γ) is a context, then (Ξ : Γ) ⊢ c : φ,
if φ = CnstTp(Lλ)(c).

b. If x ∈ Var(Lλ) and (Ξ : Γ) is a context, then (Ξ : Γ) ⊢ x : φ, if
(x : φ) ∈ (Ξ : Γ).

2. Let us suppose that n > 1 and for every (Υ : ∆) context, type ψ
and expression N with |Tree(N)| < n, the relation (Υ : ∆) ⊢ N : ψ
is defined. Let (Ξ : Γ) be a context, φ a type and M an expression
such that |Tree(M)| = n.

a. Let M = P (Q). Then (Ξ : Γ) ⊢ M : φ, if (Ξ : Γ) ⊢ Q : β and
(Ξ : Γ) ⊢ P : α(β) and φ = α.

b. Let M = (λx)P . Then (Ξ : Γ) ⊢ M : φ, if (Υ : ∆) ⊢ P : α,
φ = α(β) and (Ξ : Γ) = (Υ : ∆) \ {(x : β)}.8,

For some examples, see Troelstra & Schwichtenberg (2000, 10).

8 Cf. Sørensen & Urzyczyn (1998, 41, def. 3.1.1.).



K + K = 120 / p. 433 / May 3, 2019

Indefinite descriptions in typed lambda calculus 433

2.2. Montague-semantics

Definition 6. Let M ̸= ∅. By induction on |Tree(φ)|, the domain set
DM (φ) of type φ ∈ LTyp is defined as follows.

1. DM (o) = {T,F}, DM (ι) =M

2. If DM (α) and DM (β) is defined earlier, then

DM (α(β)) = DM (β)DM (α)

where DM (β)DM (α) is the set {f : DM (β)→ DM (α)}.

If M is fixed, then D(φ) is written instead.

Definition 7. IfM ̸= ∅, Lλ is a lambda-language and (Ξ : Γ) is a context,
then a function a : Var(Lλ) → ∪φ∈LTypDM (φ) is an assignation of the
variables. The assignation a is an assignation of the type (Ξ : Γ), if for
every x ∈ Ξ, a(x) ∈ DM (α) whenever (x : α) ∈ (Ξ : Γ).

Definition 8. Let Lλ be a typed lambda-language, M ̸= ∅. The tuple
M = ⟨M, IpM⟩ is a model over the language Lλ, if IpM : C → ∪φ∈LTypD(φ)

such that IpM(c) ∈ D(CnstTp(Lλ)(c)).

Definition 9. Let Lλ be a typed lambda-language, M = ⟨M, IpM⟩ a
model over the language Lλ, (Ξ : Γ) a context and a an assignation of the
type (Ξ : Γ). Suppose that for N ∈ Exp(Lλ) there is a type φ such that
(Ξ : Γ) ⊢ N : φ. By induction on |Tree(N)| the semantic value [[N ]]Ma in
context (Ξ : Γ) is defined as follows.

1. If N = c ∈ Const(Lλ), then

[[c]]Ma = IpM(c).

2. If N = x ∈ Var(Lλ), then

[[x]]Ma = a(x).

3. Let N = P (Q), then

[[P (Q)]]Ma = [[P ]]Ma ([[Q]]Ma ).

4. Let N = (λx)P and let the assignment a[x→ ξ] be the following:

a[x→ ξ](y) = a(y) for every variable y ̸= x, and a(x) = ξ.



K + K = 120 / p. 434 / May 3, 2019

434 Zoltán Molnár

Then
[[(λx)P ]]Ma : D(α)→ D(β) ; ξ 7→ [[P ]]Ma[x→ξ]

where (Ξ : Γ) ⊢ x : α and (Ξ : Γ) ⊢ P : β.

Note that if N is not typeable in a context (Ξ : Γ), i.e., there is no type φ
such that

(Ξ : Γ) ⊢ N : φ

then N has no semantic value in an assignment of the type of the context.
For example, let the type of the constant c be o(ι) and the context (Ξ :
Γ) = {(x : o)}. Then the expression c(x) is not typeable from the context
{(x : o)}, since the argument of c must be an expression of the type ι.
However, c(x) is a well-defined expression, it has no semantic value in the
context {(x : o)}.

2.3. Logical and epsilon extensions

The logical operators will be defined as constants of certain types. If Lλ

is a typed lambda language, then it could be extended by the following
constants.

1. ¬ : o(o) IpM(¬) : T 7→ F,F 7→ T in a model M,

2. ∨ : o(o(o)) IpM(∨) : (F,F) 7→ F, and T otherwise in a model M,

3. ∀ : o(o(ι)) IpM(∀) : {T,F}M → {T,F}, (M → {T,F}; ξ 7→ T) 7→
T, and F otherwise in a model M,

4. ε : ι(o(ι)) IpM(ε) : {T,F}M →M : f 7→ g({ξ ∈M | f(ξ) = T}),
where g is a fixed choice function P(M)→M such that g(S) ∈ S, if
S ̸= ∅ and g(S) ∈M , if S = ∅, in a model M.

In what follows, two specific extensions will be made use of, the plain
extension

L∀
λ with Const(L∀

λ) = Const(Lλ) ∪ {¬,∨, ∀}
and the epsilon extension

L∀ε
λ with Const(L∀ε

λ ) = Const(Lλ) ∪ {¬,∨, ∀, ε}.

If M is a model of L∀
λ, then (M, g) will denote the (expanded) model of

the L∀ε
λ extension with a choice function g described above.9

9 Actually, epsilon-terms are a special kind of Skolem functions; it is pointed out in
Monk (1976, 481) and in Mints (1996, sec. 2).



K + K = 120 / p. 435 / May 3, 2019

Indefinite descriptions in typed lambda calculus 435

Some further (classical) notations will also be used:

P → Q = ∨([¬(P )](Q)), P&Q = ¬(∨([¬(P )](¬(Q)))), (∀x)P = ∀((λx)P )

(εx)P = ε((λx)P ).

For further purposes the language L∀ε=
λ using identity of individuals is also

introduced and the meaning of = is defined as

5. =: (o(ι))(ι) IpM(=) : M2 → {T,F}, (x, y) 7→ T, if x = y and F
otherwise in a model M.

2.4. Examples

Proposition 1. Let x be a variable and (M, g) be a model over the lan-
guage L∀ε=

λ . Then

1. ⊢ (∀x)(x = x) : o

2. ⊢ (εx)(x ̸= x) = (εx)(x ̸= x) : o

3. [[(∀x)(x = x)]](M,g) = [[(εx)(x ̸= x) = (εx)(x ̸= x)]](M,g) = T

Proof. (1)

∀((λx)(x = x)) : o

(λx)(x = x) : o(ι) ▹

x = x : o

x : ι ◃=(x) : o(ι)

x : ι ◃= : [o(ι)](ι)

∀ : o(o(ι))

Here (= (x))(x) is denoted by x = x. The proof tree above shows that the
expression ∀((λx)(x = x)), which is the same as (∀x)(x = x), is typeabe
by the type o. The labels ◃ on the left sides of the leaves mark the places
which are called the “dischargeable premises” in proof theory. ▹ marks the
node where they are abandoned. According to part (2b) of Definition 5,
both the x : ι-s are discharged by the node (λx)([= (x)](x)) : o(ι), i.e.,



K + K = 120 / p. 436 / May 3, 2019

436 Zoltán Molnár

(x : ι) can be canceled from the context, which is now an empty set. Note
that, the use of the labels ▹ and ◃ is completely unnecessary, since the
role of the variable x is exactly that of the triangles. The variable x in the
leaves marks the “dischargeable premises” and the symbol (λx) marks the
node discharging the premises labeled by the free variable x, after which
x becomes a bound variable.
(2)

Here, according to the definitions of ε and= as constants above, ε((λx)(x ̸=
x)) is denoted by (εx)(x ̸= x) and ¬(x = x) is denoted by x ̸= x. The
above proof tree proves that (εx)(x ̸= x) = (εx)(x ̸= x) is typeable by o.
(3)

[[(∀x)(x = x)]](M,g)
a = [[∀((λx)(x = x)]](M,g)

a

= [[∀]](M,g)
a ([[(λx)(x = x)]](M,g))a

= [[∀]](M,g)
a (ξ 7→ [[= (x)(x)]]

(M,g)
a[x→ξ])

= [[∀]](M,g)
a (ξ 7→ [[= (x)]]

(M,g)
a[x→ξ](ξ))

= [[∀]](M,g)
a (ξ 7→ [[=]]

(M,g)
a[x→ξ](ξ)(ξ))

= [[∀]](M,g)
a (ξ 7→ T)

= T

The second expression’s semantic value is trivial:
[[(εx)(x ̸= x) = (εx)(x ̸= x)]](M,g)

a = [[=]](M,g)
a ([[(εx)(x ̸= x)]](M,g)

a )([[(εx)(x ̸= x)]](M,g)
a )

= T



K + K = 120 / p. 437 / May 3, 2019

Indefinite descriptions in typed lambda calculus 437

below, we determine it:

[[(εx)(x ̸= x)]](M,g)
a = [[ε((λx)(x ̸= x))]](M,g)

a

= [[ε]](M,g)
a ([[(λx)(x ̸= x)]](M,g)

a )

= [[ε]](M,g)
a (ξ 7→ [[x ̸= x]]

(M,g)
a[x→ξ])

= g({ξ ∈M | [[x ̸= x]]
(M,g)
a[x→ξ] = T}) = g(∅)

= g({ξ ∈M | [[¬]](M,g)
a[x→ξ]([[=]]

(M,g)
a[x→ξ](ξ)(ξ)) = T}) = g(∅)

2.5. Epsilon-invariant expressions

Definition 10. Let N ∈ Exp(L∀ε
λ ) be such that for a context (Ξ : Γ) the

relation (Ξ : Γ) ⊢ N : φ holds for a type φ and let M be a L∀
λ model. N

is said to be epsilon-invariant over the model M, if for every assignment
a of type (Ξ : Γ) and choice functions g1, g2 : P(M)→M it holds that

[[N ]](M,g1)
a = [[N ]](M,g2)

a .

The notion above is a symbolic formulation of the intuitive term “epsilon-
independent”. In FOL this concept was applied to show that “epsilon-
independent” sentences can be reformulated into an epsilon-free one, pro-
vided the sentence is independent over every model (see Blass & Gurevich
2000).

3. Epsilon and application

Theorem 1. Let P,Q ∈ Exp(L∀ε
λ ), M be a model of L∀

λ, (Ξ : Γ) a context,
(Ξ : Γ) ⊢ P : o, (Ξ : Γ) ⊢ Q : o and x ∈ Var(L∀ε

λ ), furthermore, let
[(λx)P ]((εx)Q), P and Q be epsilon-invariant over the model M. Then for
every assignment a of type (Ξ : Γ) and choice function g : P(M)→M :
[[[(λx)P ]((εx)Q)]](M,g)

a = [[((∀x)(¬Q)&(∀x)P ) ∨ (((∃x)Q)&(∀x)(Q→ P ))]](M,g)
a .

Proof. (1) Let the right hand side be T.
First case: [[((∀x)(¬Q)&(∀x)P )]](M,g)

a = T. Then [[(∀x)P )]](M,g)
a = T holds

and let m = [[(εx)Q]]
(M,g)
a ∈M . Hence, by definition

T = [[(∀x)P )]](M,g)
a = [[∀((λx)P )]](M,g)

a



K + K = 120 / p. 438 / May 3, 2019

438 Zoltán Molnár

that is
[[(λx)P ]](M,g)

a =
(
ξ 7→ [[P ]]

(M,g)
a[x→ξ]

)
≡ T.

Hence

[[[(λx)P ]((εx)Q)]](M,g)
a = [[[(λx)P ]]](M,g)

a (m) = [[P ]]
(M,g)
a[x→m] = T.

Second case: [[(((∃x)Q)&(∀x)(Q→ P ))]]
(M,g)
a = T. Then

[[(λx)¬Q]](M,g)
a =

(
ξ 7→ [[¬Q]]

(M,g)
a[x→ξ]

)
̸≡ T

hence for a ξ ∈ M [[Q]]
(M,g)
a[x→ξ] = T. Therefore, if [[ε((λx)Q)]]

(M,g)
a = m

then [[(λx)Q]]
(M,g)
a (m) = T. But from [[(∀x)(Q → P ))]]

(M,g)
a = T it follows

that [[P ]]
(M,g)
a[x→m] = T, since [[Q]]

(M,g)
a[x→m] = T. Hence, [[(λx)P ]]

(M,g)
a (m) =

[[[(λx)P ]((εx)Q)]]
(M,g)
a = T.

(2) Suppose the left hand side is T. First case: let [[((∀x)(¬Q)]]
(M,g)
a = T,

m ∈M arbitrary and g′ is the choice function such that g′(∅) = m. Hence,
by the epsilon-invariance of P and [(λx)P ]((εx)Q) it follows that

T = [[[(λx)P ]((εx)Q)]](M,g)
a = [[[(λx)P ]((εx)Q)]](M,g′)

a = [[P ]]
(M,g′)
a[x→m] = [[P ]]

(M,g)
a[x→m]

therefore [[(∀x)P ]](M,g)
a = T. Second case: let [[((∃x)Q]]

(M,g)
a = T, m ∈ M

arbitrary such that [[Q]]
(M,g)
a[x→m] = T and g′ is the choice function such that

g′({ξ ∈M | [[Q]]
(M,g)
a[x→ξ] = T}) = m. Then by the epsilon-invariance of P , Q

and [(λx)P ]((εx)Q) it follows that

T = [[[(λx)P ]((εx)Q)]](M,g)
a = [[[(λx)P ]((εx)Q)]](M,g′)

a = [[P ]]
(M,g′)
a[x→m] = [[P ]]

(M,g)
a[x→m]

for every m such that [[Q]]
(M,g)
a[x→m] = T. Hence, [[(∀x)(Q→ P )]]

(M,g)
a = T



K + K = 120 / p. 439 / May 3, 2019

Indefinite descriptions in typed lambda calculus 439

4. Morning Star and King of France tests

The concluding facts can be stated in two claims:

1. In the formal language L∀ε
λ (which is supposed to model the be-

haviour of descriptions) the (closed) term (εx)Q has referential
meaning in the sense that a fixed model (M, g) singles out an in-
dividual [[(εx)Q]](M,g) ∈M for (εx)Q as semantic value.

2. In some cases, when (εx)Q is part of a compound sentence
[(λx)P ]((εx)Q), with all its components being epsilon-invariant, the
(εx)Q has a contextual meaning, such that the sentence [(λx)P ]((εx)Q)

has an equivalent epsilon-free reformulation using quantified expres-
sions from the plain language L∀

λ.

We do not intend to set up a weaker theory than Russell’s Theory of
Descriptions. A new theory must serve at least as many solutions as far as
Russell’s proposal was able to solve. An appropriate indicator is to look
at the two problems that the Theory of Descriptions solved and examine
what the new model porposes. The first one is the problem of Hesperus
and Phosphorus (below it will be called Morning Star Test), the second
one is the problem of the empty names (the King of France Test).

4.1. Morning Star Test

In 1905, Russell gave a FOL-based solution of the so-called Frege Puzzle in
terms of RTD, understandably, without mentioning the intensional tools
of possible world semantics, which is a much later development. Here, I
would like to show briefly that even the exposition of the puzzle is so
widely criticized, that the RTD result of the test is rather irrelevant to us.

“Gottlob thinks that the Morning Star is illuminated by the Sun.”
“The Evening Star is the Morning Star.”
—
“Gottlob thinks that the Evening Star is illuminated by the Sun”.

(Cf. Frege 1892/1990.)

First of all, I would like to point out that several scholars are commit-
ted to the assumption that the names such as the Morning Star or the
Evening Star are understood tacitly as definite descriptions. For Russell,
these names abbreviate descriptions, hence they are denoting phrases too
(Dummett 1973, 97). The problem is that, according to Leiniz’s Rule, since



K + K = 120 / p. 440 / May 3, 2019

440 Zoltán Molnár

the Evening Star is the Morning Star, the two phrases are interchangeable.
However, the above inference does not seem to be valid, since it is possi-
ble that Gottlob thinks that the Morning Star is illuminated by the Sun,
but he does not necessarily know this fact about the Evening Star, even
if in reality the two planets are the same, which is the case. Russell’s so-
lution was that the phrases the Morning Star and the Evening Star are
not proper names, they only have contextual meanings, hence they are not
interchangeable due to formal reasons.10

In the epsilon language L∀ε
λ , the definite descriptions are proper names,

they are manifested as epsilon terms on the object language level, hence
the modelling in terms of the epsilon-language fails the Morning Star Test,
and it does not explain the puzzle. Fortunately, hitherto, the Frege Puzzle
and the semantic status of the expressions like the Morning star are not
completely solved. If the phrase the Morning star is a rigid designator, as it
is done in Kripke’s proposal, then the Puzzle is solved. Here, temporarily,
not having modal context, rigid means that the model designates a single
individual in one step, and does not select first a set, then a member of
it, by a choice function.11 Then the puzzle only says that, if planet Venus
is illuminated by the Sun, then planet Venus is illuminated by the Sun.
According to Kripke’s approach, the problematic case is the sentence The
Evening Star is the Morning Star. It is a necessary truth, but it may
be problematic from an epistemological point of view.12 For the epsilon
model, the solution is the same. According to Monk, the closed epsilon
terms are constants, therefore they are rigid designators in accordance with
the Kripke doctrine. However, as Fitting pointed out, an epsilon term,
being description-like, can neither be a constant, nor a variable. It is a
complex flexible designator (see Fitting 1972). Here, if the Morning star
is a complex demonstrative (selected by a descriptive term in the actual
world), then it is a rigid designator (see Kaplan 1989). Clearly, now, I do
not have to deal with the modal context of epsilon terms, knowing that the
highly applicable tool of demonstratives might make the modal approach
much more complex, and might not add essentially more to the above
consideration.

10 See Russell (1905) and Whitehead & Russell (1910/1967).
11 Of course, it is a rough simplification. Picking an individual means direct reference,

rigid means the term has the same semantic value along the possible worlds. What
is more, the notion of “rigid” above is understandable, but mathematically vague.

12 See Kripke (1972, 102). The whole story can be found in Zvolenszky (2007).



K + K = 120 / p. 441 / May 3, 2019

Indefinite descriptions in typed lambda calculus 441

4.2. The King of France Test

Consider the following two sentences

“The present King of France is bald.”
“The present King of France is not bald.”

In order to determine the truth value of the first one, let us imagine the set
of all bald people. Since the present King of France is not in this set, the
first sentence is false. But, the same reasoning leads to the fact that the
second sentence is false too. Which is a contradiction. Hence, the phrase
the present King of France is not a proper name, it cannot have a meaning
in isolation, rather it only has a contextual meaning and the sentences
containing such phrases are quantified formulas. This is Russell’s solution.
In the epsilon calculus the semantic values of the epsilon terms are defined
in all cases. The two sentences above are unproblematic, they assign to the
phrase the present King of France an existing individual as reference. And
it is either bald or not bald. According to Theorem 1 of the present paper,
sentences may possess contextual meaning too, where the truth value is
also well-defined. Of course, the reference of the present King of France
in the epsilon calculus is not the present King of France. Approaching the
situation on a more formal level, let us consider the symbolic sentence

(εx)(x ̸= x) = (εx)(x ̸= x)

This is a sentence containing terms which are ill-defined as descriptions:
x ̸= x is an empty predicate. However, the semantic value of (εx)(x ̸= x), in
a given model, is well-defined. Moreover, (εx)(x ̸= x) = (εx)(x ̸= x) is an
epsilon invariant sentence, since, it is true in any given epsilon semantics.
And indeed, there are epsilon semantics (for example the Bourbaki group’s
formal systems), where (εx)(x ̸= x) = (εx)(x ̸= x) is syntactically identical
to the sentence (∀x)(x = x). (εx)(x ̸= x) = (εx)(x ̸= x) is an epsilon-
invariant sentence, which has contextual meaning too: it is equivalent to
the fact that every individual is identical to itself.

The situation is very similar to the problem of the interesting-looking
man holding a martini. In this case, the the present King of France is
rather a person who is, in fact, bald, but not the present King of France,
and (εx)(x ̸= x) is an existing individual, which is identical to itself, but
of course, it does not hold that it is not the same as itself.



K + K = 120 / p. 442 / May 3, 2019

442 Zoltán Molnár

Acknowledgements

I would like to thank Endre Latabár, András Simon and an anonymous
reviewer for their helpful comments concerning specific parts of the paper
or the whole one.

References

Ahrendt, W. and M. Giese. 1999. Hilbert’s epsilon-terms in automated theorem proving.
In N. V. Murray (ed.) Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX ’99. 171–185.

Blass, A. and Y. Gurevich. 2000. The logic of choice. The Journal of Symbolic Logic 65.
1264–1310.

Caicedo, X. 1995. Hilbert’s ε symbol in the presence of generalized quantifiers. In M.
Krynicki, M. Mostowski and L. W. Szczerba (eds.) Quantifiers: Logics, models and
computation. Volume two: Contributions. Berlin & New York: Springer. 63–78.

Donnellan, K. 1966. Reference and definite descriptions. Philosophical Review 75. 281–304.
Dummett, M. 1973. Frege: Philosophy of language. London: Duckworth.
Fitting, M. 1972. An epsilon-calculus system for first order S4. In W. Hodges (ed.) Con-

ference in Mathematical Logic – London ’70. Berlin & New York: Springer. 103–110.
Frege, G. 1892/1990. On sense and reference. In P. Geach and M. Black (eds.) Translations

from the philosophical writings of Gottlob Frege. Oxford: Basil Blackwell. 56–78.
Kaplan, D. 1989. Demonstratives. In J. Almog, J. Perry and H. Wettstein (eds.) Themes

from Kaplan. Oxford: Oxford University Press. 481–563.
Kneebone, G. T. 1963. Mathematical logic and the foundation of mathematics. London:

Van Nostrand.
Kripke, S. A. 1972. Naming and necessity. In D. Davidson and G. Harman (eds.) Semantics

of natural language. Dordrecht: Reidel. 251–355.
Mints, G. 1996. Thoralf Skolem and the epsilon substitution method for predicate logic.

Nordic Journal of Philosophical Logic 1. 133–146.
Molnár, Z. 2013. Epsilon-invariant substitutions and indefinite descriptions. Logic Journal

of the IGPL 21. 812–829.
Monk, J. D. 1976. Mathematical logic. Berlin & New York: Springer.
Russell, B. 1905. On denoting. Mind 14. 479–493. (In: B. Russell: Logic and knowledge.

London: Routledge. 39–56).
Simmons, H. 2000. Derivation and computation: Taking the Curry–Howard correspondence

seriously. Cambridge: Cambridge University Press.
Slater, H. 2007. Completing Russell’s logic. Journal of Bertrand Russell Studies 27. Article

15.
Slater, H. 2009. Hilbert’s epsilon calculus and its successors. In D. M. Gabbay and J.

Woods (eds.) Handbook of the history of logic. Logic from Russell to Church, Vol. 5.
Amsterdam: North-Holland. 385–448.



K + K = 120 / p. 443 / May 3, 2019

Indefinite descriptions in typed lambda calculus 443

Sørensen, M. H. B. and P. Urzyczyn. 1998. Lectures on the Curry–Howard Isomorphism.
Ms. http://disi.unitn.it/∼bernardi/RSISE11/Papers/curry-howard.pdf.

Tarski, A. 1956. Logic semantics, metamathematics papers from 1923 to 1938. Oxford:
Clarendon Press.

Troelstra, A. S. and H. Schwichtenberg. 2000. Basic proof theory (Second edition). Cam-
bridge: Cambridge University Press.

Whitehead, A. N. and B. Russell. 1910/1967. Incomplete symbols: Descriptions. In J.
van Heijenoort (ed.) From Frege to Gödel: A source book in mathematical logic
1879–1931. Cambridge, MA: Harvard University Press. 216–223.

Zvolenszky, Zs. 2007. Modality, names and descriptions. Doctoral dissertation. New York
University.



K + K = 120 / p. 444 / May 3, 2019


