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ABSTRACT

Could a grammatical English sentence contain three consecutive strictly
transitive prepositions? One might easily think not: strictly transitive
prepositions require NP complements. However, prepositions can be
stranded, clausal constituents can begin with prepositions, and so on.
Ideally one would like such questions to be algorithmically decidable.
I examine the theoretical issue, note a parallel in number theory, reveal
the solution to the empirical puzzle (but not the number-theoretic one),
and conclude by noting that there is indeed an algorithm for deciding
whether somesequence can appear as a proper subsequenceof a gram-
matical string, provided English is context-free.

1. A puzzle in English grammar

Some English prepositions can be used either with a noun-phrase comple-
ment or without it if the context permits:

a.(1) Open the gate and walk through it.
b. Open the gate and walk through.

a.(2) After a while we went back inside the house.
b. After a while we went back inside.

Others, like of and into, strictly require a noun-phrase complement and
cannot be used grammatically without one:

a.(3) She asked for dihydrocodeine, but I had never heard of it.
b. *She asked for dihydrocodeine, but I had never heard of.

a.(4) We went back to the car and got into it.
b. *We went back to the car and got into.
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I’ll refer to the latter kind of prepositions as strictly transitive. Consider
now the question stated in (5).

(5) Is there a grammatical English sentence containing a sequence of three consecutive
occurrences of a single strictly transitive preposition?

You might think that this question can be immediately answered in the
negative on the grounds that the next word after a strictly transitive prepo-
sition would have to be the beginning of a noun phrase and noun phrases
do not begin with prepositions. But not so fast: English syntax is much
trickier than that. For one thing, the complement of a preposition does not
have to immediately follow it, but can be displaced in at least three ways.

First, there are prepositional passives like (6b), where what is under-
stood as the complement of a preposition (as in (6a)) is in grammatical
terms the subject of the clause, and thus separated from the preposition:

a.(6) People seldom speak of this.
b. This is seldom spoken of.

Grammarians speak of such prepositions as stranded. Because of what are
often called “subject raising” constructions, the subject can appear arbi-
trarily far away from the stranded preposition:

(7) This seems to have turned out under the circumstances to have been only very seldom
spoken of.

Second, items like interrogative or relative words or phrases can be dis-
placed an arbitrary distance to the beginning of a clause. This is the most
common way in which a preposition can be stranded. Notice that these
two sentences are both grammatical, and are synonymous (though while
the first is normal in style, the second is rather formal and pompous):

a.(8) Which regulation do you think the committee imagines the provost’s action might
have been in violation of?

b. Of which regulation do you think the committee imagines the provost’s action
might have been in violation?

In both of these the preposition of is understood to have which regulation
as its complement. Notice that in (8b) the construction involved allows the
strictly transitive preposition of to be the first word in its clause.

Third, phrases can also be displaced toward the end of the clause,
yielding a different way in which a strictly transitive preposition may fail
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to be immediately followed by its complement, as when a parenthetical is
inserted after a preposition:

(9) It was a painting of, or perhaps I should say a painting apparently intended to vaguely
suggest, a cornfield in summer.

Thus in order to settle the question in (5) it will be necessary to ensure that
no facts of this sort can interact to create a way in which three transitive
prepositions could become adjacent. It is not just a matter of which words
are allowed to be adjacent to which other words: the interactions of the
many different syntactic constructions in English are not necessarily going
to be easy to foresee.

2. Generative grammars and decidability

What (5) asks is whether some combination of grammatical configurations
can permit a sentence to contain a sequence like of of of or into into into.
It seems intuitively unlikely. But can we prove that it is impossible?

There are systematic computational ways of answering some kinds of
questions about sentences in languages. The great majority of the relevant
work has been based on systems of rules that Post (1943) originally called
production systems, and computer scientists often call rewriting systems,
and linguists call generative grammars. Basically they are sets of rules
for nondeterministic random construction of abstract structures such as
strings or trees.

Post’s systems were developed for the purpose of formalizing rules of
inference in logic, and were very elaborate, allowing for conclusions to be
derived from arbitrary-sized finite sets of premises of arbitrary complexity.
As soon as the concept of recursively enumerable (r.e.) sets was clearly
formulated in the 1930s, it was clear to Post that any r.e. set of strings
could be generated by one of his “canonical production systems”. In 1943 he
proved that this remained true for dramatically restricted systems that he
called “normal” systems, in which every rule had the form “yX ⇒ Xz” for
specified strings y and z, where X is a free string-valued variable, and in
1947 he proved the same for another special case, where the rules all have
the form “X1yX2 ⇒ X1zX2”, for specified strings y and z and variables X1

and X2. This, of course, is exactly the form of the grammars that Chomsky
(1959) later called “type 0”.

For any form of grammar that has this kind of expressive power (i.e.,
that can generate any arbitrary r.e. set), questions of the form “Does
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grammar G generate any string containing the substring w?” are always
going to be undecidable. This follows from Rice’s theorem (Hopcroft & Ull-
man 1979, 185–192) as applied to generative grammars rather than Turing
machines. All non-trivial properties of r.e. sets (that is, properties that
hold of some r.e. sets but not all) are undecidable.

I suspect it will also hold for the restricted class called context-sensitive
languages (equivalent to the class of type 0 grammars in which the z is
always at least as long as the y), though the conjecture needs a proof. The
rationale for my conjecture is that nearly all decision problems asking for a
property of an arbitrary context-sensitive stringset L are undecidable, the
two exceptions being membership (“Is w in L?”), which is decidable, and
complement type (“Is L context-sensitive?”), which was proved in 1987,
surprisingly, to be trivial in the sense of having a positive answer for every
context-sensitive L (this follows from the Immerman–Szelpcsényi theorem;
see Immerman 1999, 149–151). Despite the decidability of membership,
context-sensitive languages are extremely similar to arbitrary c.e. sets,
and have essentially all of their complexity. Any type 0 grammar G over
a symbol inventory Σ can be converted into a context-sensitive grammar
G′ over Σ ∪ b where b is a new dummy symbol used for padding the ends
of rules in which the right hand side is shorter than the left hand side.
L(G) is then obtainable from L(G′) simply by ignoring b (where “ignoring
b” means applying a homomorphism that erases b).

The most interesting family of stringsets for purposes of studying the
properties of human languages is the much smaller subset known as the
context-free stringsets (standardly called CFLs). This deserves closer at-
tention. CFLs are generated by context-free grammars (CFGs). It is by
no means implausible that the set of grammatical sentences of English
could be exactly generated by a CFG: see Pullum & Gazdar (1982), Pul-
lum (1985), and Pullum & Rawlins (2007) for discussion of some failed
counterarguments.

CFGs are far more tractable than context-sensitive grammars in most
respects. But even for a CFG, it is not always immediately obvious what it
can do. As a very simple example, consider the CFG with terminals {a, b},
nonterminals {S,A,B}, start symbol S, and the rules shown in (10).

(10) S → aB A→ bAA

S → bA B → b

A→ a B → bS

A→ aS B → aBB
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The strings that this grammar generates are jumbles of a’s and b’s in
arbitrary orders, but they all meet a special condition: the number of a’s
is exactly the same as the number of b’s. The grammar in (10) generates
all and only the strings meeting that condition. This could hardly be said
to be immediately evident from looking at the rules, but it can be proved
inductively (see Hopcroft & Ullman 1979, 81–82).

It follows that the grammar definitely allows for the construction of a
sentence with aaa in it, and that any such string will also contain at least
three instances of b, and so on. Indeed, we know for any arbitrary string of
a’s and b’s that the answer to whether (10) can generate it is yes. However,
that is specific to (10), and depends on the proof concerning what stringset
it generates. Can we decide such questions more generally?

After all, although membership (“Can the string w be generated by
the CFG G?”) is decidable, and so is emptiness (“Are any strings at all
generated by the CFG G?”), many other semantic questions about CFGs
(i.e., questions not about their form but about their meaning, in the sense
of what strings they can generate under their usual interpretation) are for-
mally undecidable. These include intersection emptiness (“Does CFL L1

have a non-empty intersection with CFL L2?”), stringset inclusion (“Are all
the sentences of CFL L1 included among the sentences of CFL L2?”), reg-
ularity (“Is CFL L accepted by a finite-state automaton?”), (see Hopcroft
& Ullman 1979, 281), and many others.

The set of all strings of English words (whether grammatical or not)
in which the substring of of of appears is clearly regular (finite-state), as-
suming only that English has a finite vocabulary V of words.1 The finite
automaton accepting the set remains always in its start state q0, checking
only that each word is in V , and always rejects, except that if it encoun-
ters an of it switches to q1, and if another one immediately follows that it
goes into q2, and if another immediately follows that it goes into q3. Once
in q3 it always accepts provided only that all subsequent words are in V .
We seek a general algorithm for finding out whether some specific CFL
has a non-null intersection with that regular set. But the general ques-
tion of whether two stringsets have a non-null intersection is undecidable.

That is not in contradiction with what was said above about the rules
in (10) and the set of strings containing aaa. There we had a specific CFG

1 Kornai (2002) gives an interesting argument against this assumption, based on em-
pirical facts about statistical properties of text: English text exhibits properties that
are best modelled in terms of an infinite word stock. But for the sake of the present
argument we continue under the usual formal language theory assumption of a finite
terminal vocabulary.
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for which it happened to be possible to construct a proof that all the
generated strings had equinumerous as and bs, and that some generated
strings contained aaa. This shows that in certain special cases we may find
out the answer. That does not give us a general algorithm for all cases.

I will return later to the question of whether, given a complete gen-
erative grammar for English, there would be a systematic general way of
using it to guarantee answers to questions like (5). But first I want to note
an interesting similarity to a question in mathematics.

3. A parallel in number theory

Question (5) has a particular logical property in common with the question
in (11), which derives from a famous conjecture in number theory.

(11) Is there an even number that is not equal to the sum of two primes?

This can be easily stated using first-order logic interpreted in the usual
number-theory model where the domain is the non-negative integers with
the operations “+” (addition) and “·” (multiplication). The predicate “even”
can be defined as in (12a); “prime” can be defined as in (12b); and then
(11) is the question of whether (12c) is true in the specified model.

a.(12) even(x) =df (∃y[y ≥ 1 ∧ y · 2 = x])

b. prime(x) =df (¬(∃y∃z[y ≥ 2 ∧ z ≥ 2 ∧ y · z = x]))

c. ∃x[even(x) ∧ ¬(∃y∃z[prime(y) ∧ prime(z) ∧ y + z = x])]

What (11) is in effect asking for is a counterexample to the strong Goldbach
conjecture, henceforth GC, which claims that every even number greater
than 2 is the sum of a pair of primes. Most number theorists are inclined
to think this conjecture is true. One reason is that as we consider larger
and larger even integers n, the number of different pairs of primes that
sum to n increases, so that for any large n it is overwhelmingly likely that
there is at least one pair that sums to n. But GC is a non-probabilistic
claim, and as is well known, no proof of it has been found, so currently it
cannot be guaranteed that the answer to (11) is negative.

The logically interesting property that (5) and (11) share is that for
each of them, showing that the question is algorithmically undecidable
would ipso facto (though indirectly) tell us the answer. This sounds para-
doxical, but it is not. It is a fairly simple point, fairly well known among
number theorists and mathematical logicians.
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Consider (11) first. To say that the answer to (11) cannot be discovered
by an algorithm would mean that GC is unprovable within our system for
proving things in arithmetic. And we know from Gödel (1931), of course,
that some truths of arithmetic are unprovable in any system capable of
expressing all arithmetical truths.

For concreteness, assume the standard system defined by the Peano
axioms, known as PA, and a monadic second-order logic interpreted on
⟨N,+, ·⟩ (the natural numbers with addition and multiplication). To say
that GC is incapable of proof within PA is in effect to say that GC is
independent of PA, in the sense that we could add GC to the set of PA’s
consequences, or add its negation, without losing consistency either way.
You could believe all the truths of PA plus GC, or believe all the truths of
PA plus the negation of GC, and no one would be able to use PA to prove
you wrong either way.

Yet if GC were shown to be independent of PA, we would immediately
know whether it was true or not: it would have to be true, so the answer
to (11) would be negative. Here is the reasoning.

If GC were false, there would be a counterexample, an even number
that cannot be expressed as the sum of any two primes. Let g be that num-
ber. We could demonstrate GC’s falsity in an elementary way by simply
exhibiting the list of all triples ⟨p1, p2, k⟩ such that p1 and p2 are primes
and k ≤ g and p1+p2 = k. The list might be very long, if g were very large,
but it would be finite, and could be constructed by a very straightforward
computer program. The absence from the list of any case where k = g
would falsify GC, and thus answer (11) in the affirmative.

If (11) cannot be answered in the affirmative by a proof, the answer
to it must be negative, i.e., GC must be true. The answer to (11) cannot
be positive yet unprovably so.

An analogous result holds for (5). If we found some way, using facts
about a generative grammar for English, to show that (5) cannot be an-
swered within some system of mathematical reasoning, then we would im-
mediately (but indirectly) know that the answer to (5) is negative, because
otherwise there would exist a sentence containing three consecutive occur-
rences of a single transitive preposition, and simply exhibiting the deriva-
tion of that sentence would settle the question, offering a proof of the
positive answer. The answer to (5) cannot be positive yet unprovably so.
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4. The answer to the grammatical puzzle

A key difference between question (5) and question (11) is that (5) is in a
sense empirical. It is an empirical fact that those who describe themselves
as speakers of English invariably regard All cows eat grass as grammatical
but *Grass eat cows all as ungrammatical; they regard Never have I heard
such nonsense as grammatical but *Never I have heard such nonsense
as ungrammatical; and so on. If there is a sentence containing three in-
stances of some transitive preposition in a row that English speakers treat
as grammatical when it is presented to them, then that is an empirical
fact (subject to all the usual epistemological caveats, to be discussed very
shortly).

My guess, on the basis of 40 years’ experience of working on English
syntax and techniques for formalizing syntactic theories, and six years
working with Rodney Huddleston on the largest and most complete refer-
ence grammar currently available for English (Huddleston & Pullum 2002),
would have been that the answer to (5) was negative: I would have thought
that the rules of English grammar could not allow three consecutive oc-
currences of a strictly transitive preposition, on the grounds that there
wouldn’t appear to be any context in which all three of them could have
the obligatory noun-phrase complements they require.

But it is a very important fact about argument and evidence in syntax
that the intuition of a grammarian regarding generalizations of this sort
cannot be trusted.

It is true that the intuition of a native speaker (whether a gram-
marian or not) can generally be trusted on individual sentences. This is
why determining grammatical well-formedness for a sentence of reasonable
length normally involves little more than having a native speaker look at
it or listen to it, provided some minimal conditions of attentiveness are re-
spected. But caveats are necessary even to that claim, because aspects of
meaning, style, phonology, or processing may interfere with intuitive judg-
ments about sentencehood. For example, (13a) will generally be judged
grammatical, but the synonymous (13b) will not.

a.(13) Everybody whom everybody left departed.
b. Everybody everybody left left.

This apparently because center-embedding a phrase or clause inside an-
other, even once increases the processing load substantially. (Notice that
the relative clause everybody left is embedded with parts of the main
clause either side of it, which means processing of the main clause must be
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interrupted by the processing of another clause and then resumed where
it left off; this is discussed in Miller & Chomsky (1963) and much subse-
quent psycholinguistic literature.) The combination of that with two pairs
of adjacent duplicate words is confusing enough to completely wreck the
chances of recognizing the grammatical structure.

Likewise, it is well known that there are sentences that confuse us into
thinking they are ungrammatical by (as it were) tempting us to process
them incorrectly. They are known as garden-path sentences (Bever 1970).
One celebrated example, well known from the psycholinguistic literature,
is (14):

(14) The horse raced past the barn fell.

Our tendency to process this with raced as the preterite-tense verb of
the main clause, and an unneeded extra verb fell on the end, is almost
irresistible, and blinds us to the fact that raced can also be a past participle,
so raced past the barn could be a nonfinite passive clause modifying horse.
In other words, the sentence can be read with the same structure as (15):

(15) The car driven past the barn crashed.

Many other similar examples could be given of the ways in which poor ac-
ceptability may wrongly make a properly-formed sentence seem ungram-
matical.

However, even if native speakers can in typical cases intuitively per-
ceive the well-formed structure of an individual sentence, even skilled syn-
tacticians cannot reliably intuit the truth of generalizations about wide
ranges of sentences or phrases.

The young Noam Chomsky ventured in a conference discussion the
assertion that “The verb perform cannot be used with mass-word objects:
one can perform a task, but one cannot perform labor” (Hill 1962, 29).
Challenged by another participant (Anna Granville Hatcher) to say how
he knew this, he answered: “Because I am a native speaker of the English
Language”. Later in the discussion Hatcher asked him what he would say
if the non-count noun were magic, and Chomsky was immediately forced
to confess: “I think I would have to say that my generalization was wrong”
(ibid., 31).

On the specific point of whether a short sentence like They can per-
form magic is grammatical, or whether a short string of words like *They
can perform justice is ungrammatical, he could supply reliable intuition
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reports, like most native speakers; but confirming a broader generalization
about English sentence structure is a very different matter.

And to return to the case at hand, judging whether three consecu-
tive transitive prepositions is possible in English is a judgment concerning
an indefinitely large range of sentences. I would have hazarded the guess
that the answer was negative, but I would have been wrong. The answer
to question (5) is now known, thanks to Wells Hansen (personal com-
munication), and it is positive. Hansen showed this by constructing and
exhibiting, rather surprisingly, a grammatical sentence with an at at at
sequence. A similar one is given in (16).

(16) Donald Trump was laughed at at at least three dinner parties in Manhattan this
year.

It is fully grammatical (as well as probably also true), and surprisingly
simple to understand. Of course, it might be impugned for style: a writer
who notices that some word has been used three times within a short space,
or that a jingle effect has been created by two or three words with a similar
sound will generally reword. But that is about stylistic acceptability, not
grammaticality.

Retrospectively, we can see why and how the Hansen sentence has
to be regarded as grammatical. At occurs as a grammaticized preposition
syntactically required in the construction laugh at:

a.(17) They laughed at him.
b. *They laughed to him.
c. *They laughed by him
d. *They laughed on him.

And the choice of preposition is determined by the choice of verb; other
verbs require different prepositions:

a.(18) *We spoke at him. (speak does not take at)
b. We spoke to him. (speak does take to)
c. *We spoke on him. (speak does not take on)

a.(19) *They rely at him. (rely does not take at)
b. *They rely to him. (rely does not take to)
c. They rely on him. (rely does take on)
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Verb-preposition combinations of this sort readily yield prepositional pas-
sives (was laughed at, was spoken to, was relied on, etc.). Hansen’s sen-
tence has the form of a prepositional passive clause, with the first at of
the sequence as its stranded preposition. The subject of the clause (Donald
Trump) is understood as the complement of the first at.

But at is somewhat more syntactically versatile than of in one respect:
it can also serve as the head of a locative modifier like at three parties,
which can occur following a prepositional passive; and it occurs in the
idiomatic Preposition + Adjective combination at least, which can serve
as an adjunct modifying a determinative like three, hence, crucially, can
stand at the beginning of a noun phrase, as in at least three parties, and thus
can begin a noun phrase serving as the complement of the preposition at.

Thus when the first at is stranded in a prepositional passive construc-
tion it is possible for a second at-phrase heading a locative adjunct to
follow, and for a third at-phrase to begin the noun phrase within that
locative adjunct. All those facts are relevant to why it is that at at at can
be a possible subsequence in a grammatical sentence.

5. Proper substring possibility for CFLs

We should never forget that English syntax constitutes a vast domain of
exploration, within which are many known unknowns, and an unknown
number of unknown unknowns. This domain cannot be explored via the
simplistic appeals to “logic” that purists and usage advisers so often advo-
cate. Which sentences are grammatical is not determined by any kind of
common-sense or formal logic. The grammatical sentences are simply the
ones that happen to be permissible under the set of rules or constraints
that defines the language – the large set of exception-ridden and often
rather quirky rules that define English as it happens to be today. Dis-
covering how we are to precisely formulate the content of those rules is
a major scientific enterprise. Even an informal survey of the ground that
must be covered takes up more than 1,700 pages of text (Huddleston &
Pullum 2002, henceforth CGEL).

And we cannot blithely assume, even when we have produced such a
grammar, that there will exist an algorithm for finding out whether it is
possible for a grammatical sentence to meet some given condition, such
as having three consecutive transitive prepositions, or containing the se-
quence and the of, or any other syntactically definable property of symbol
strings. Indefinitely many precisely framed questions about human lan-
guages (considered as stringsets over a word vocabulary) are undecidable,
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even given a full, exact, and correct grammar for the language (which even
for English, of course, we do not have as yet).

While in general native speakers (whether grammarians or not) have
intuitive reactions concerning the grammaticality of specific strings of
words presented to them, they do not have intuitional access to the truth
values of generalizations about the entire range of sentences that are gram-
matical in their language, any more than mathematicians have intuitional
access to the truth values of generalizations about the integers. The key dif-
ference is that we take the truths of number theory to be a priori and neces-
sary, substantiable through rigorous proof as in the other formal sciences,
while the true statements about English grammar are at root empirical.

We have qualified intuitional access to the status of specific sentences
because we subconsciously respond to them as if we were encountering
them in actual use, and to some extent we can report on our responses
(see Devitt 2006, chapter 7, for a discussion of this topic that I find very
perceptive). But we have no veridical intuitional access to broader gener-
alizations about the grammar of our language, and can be surprised by
discovering them.

Questions about whether some word sequence like at at at or of of of
can form a subsequence of a grammatical sentence in some human lan-
guage, if we assume for concreteness that human languages can be gener-
ated by CFGs, have the general form seen in (20):

(20) Proper substring possibility
Given a CFG G with terminal vocabulary V and an arbitrary string w in V ∗, does
G generate any string that has w as a proper substring?

One might ask whether there could ever be practical reasons for needing
answers to such questions. Practical importance is of course something
that in general we discover only retrospectively, but it is not impossible
to imagine a context in which information about occurrence of substrings
might be of practical use to an engineer. A robot equipped to parse and
understand spoken English might be designed with a special simple word
sequence that would immobilize it to permit servicing (or to block a West-
world-style disaster in which robots become malign). To make sure the
robot could not be immobilized unintentionally through ordinary conver-
sation, one might want the word sequence to be one that definitely could
not form part of any sentence of the language. We know, thanks to Wells
Hansen’s discovery, that at at at could not serve that purpose. Maybe
of of of could.
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So is (20) formally decidable? The answer turns out to be yes. A prob-
lem closely related to it was studied by Lang (1988) in the context of de-
vising a context-free parsing algorithm that will yield useful output even
when faced with sentences containing unknown parts of unknown length,
by producing a finite representation of the set of all possible parses (per-
haps infinitely many) that could allow for the missing parts. Subsequently
Osorio and Navarro (2001) tackled more directly the problem of solving
proper substring possibility as stated in (20), using the CKY algorithm as
the basis for their proof and showing that the problem can be decided in
cubic time.

Osorio and Navarro point out that the problem actually has many
more areas of potential application than you might think, since CFG pars-
ing is so closely related to other computational tasks like matrix multipli-
cation and is so widely applicable: it could be relevant to DNA analysis
in bioinformatics, syntax-driven development of language tools, and shape
analysis in pattern recognition.

Given a CFG for English, therefore, we could use a fully general al-
gorithm to find out (in cubic time) whether, for example, there is a gram-
matical string with of of of as a substring. (I think there probably is,
but I leave the exercise of constructing one for the reader to pursue in
idle moments.) Of course, the algorithm presupposes the completion of a
CFG that fully and accurately generates all and only the sentences of En-
glish. The informal account in CGEL, mentioned above, is not expressed
in anything like the form of a CFG.

For what it is worth, Pullum and Rogers (2008) provide, in a rather
unexpected way, good reason to believe that there is nothing in CGEL
that is beyond the power of CFGs. They note that although the objects
that CGEL uses as structural representations are not trees, they are very
close to being trees, and the very limited departure from treehood that is
employed (downward convergence of branches in certain particular kinds of
noun phrase) can be described by a transduction to covering trees express-
ible in weak monadic second-order logic (wMSO), and wMSO-describable
sets of trees always have CFLs as their frontier sets (by the theorem of
Doner 1970). Hence CGEL appears to covertly entail that English (con-
sidered as a stringset over a vocabulary of dictionary words) is a CFL.

In principle, then, there almost certainly exists a CFG for English
on which we could run an algorithm of the sort sketched by Osorio and
Navarro to find out whether of of of (or any other word sequence) can be
a substring of a sentence.
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