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ABSTRACT

Hennie presented a very general sufficient condition for regularity
of Turing machines. This happened chronologically before Genera-
tive Phonology (Chomsky & Halle 1968) and the related finite-state re-
search (Johnson 1972; Kaplan & Kay 1994). Hennie’s condition lets us
(1) construct a finite-state transducer from any grammar implemented
by a linear-time Turing machine, and (2) to model the regularity in
context-sensitive derivations. For example, the suffixation in hunspell
dictionaries (Németh et al. 2004) corresponds to time-bounded two-way
computations performed by a Hennie machine. Furthermore, it chal-
lenges us to look for new forgotten islands of regularity where Hennie’s
condition does not necessarily hold.

1. Introduction

Generative Phonology (Chomsky & Halle 1968) is a rule-based string
rewriting system that has been scrutinized carefully over the years of its
existence. One of the major weaknesses of the system is that it has been
proven to be equivalent to Turing machines (TMs) (Chomsky 1963; John-
son 1972; Ristad 1990). As the derivations of such a machine do not neces-
sarily terminate, the system is seriously defective and impossible to falsify.
Thus, an unrestricted rewriting allowed by Generative Phonology does not
make a very good scientific theory in the light of Popper (1959), see also
Johnson (1972, 32).

In spite of the original shortcomings and the increased depth in the
current phonological theory, the original “SPE” formalism is interesting for
its own sake. First, the formalism has been employed extensively in natu-
ral language processing and descriptive linguistics. There, it has been used
to express phonological generalizations based on empirical data. Second,
revisiting the original formalism and its decidable subsets can produce
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valuable ideas that are applicable to more ambitious theories, such as
Optimality Theory (Prince & Smolensky 2004) and Harmonic Serialism
(McCarthy 2000).

1.1. The well-known islands of regularity

When realistic grammar instances in Generative Phonology have been
studied closely, a striking contrast between the original undecidable the-
ory and the actual grammars has been discovered. In pioneering studies
(Johnson 1972; Kaplan & Kay 1994), most practical grammars in Gener-
ative Phonology have been shown to satisfy a two-part condition under
which they correspond to finite-state transducers:

1. Non-self-embedding. Directional or simultaneous context-sensitive
rules whose non-contextual parts do not apply to their own output
are finite-state (Kaplan & Kay 1994, 363, 365).

2. Finite composition. If a grammar is defined as a finite sequence of
rewriting rules, each of which is a regular relation, then the grammar
as a whole represents the regular relation given by their composition
(ibid., 364).

These observations have led to the development of algorithms for trans-
forming restricted fragments, or islands, of Generative Grammar into
finite-state transducers. For example, the algorithm of Mohri & Sproat
(1996) constructs transducers from rules that are applied in a directed
fashion. Karttunen (1995) treats various application modes and differ-
ent types of context conditions. These finite-state islands in Generative
Phonology have become standard textbook material (Jurafsky & Martin
2000; Beesley & Karttunen 2003), and many redesigned compilation algo-
rithms have been proposed to pursue efficiency, flexibility and the generally
correct semantics.

The literature of methods that compile individual rules into finite-
state transducers suggests that regularity of phonological grammars is to be
proven inductively, by using operations that preserve regularity of regular
relations. But we should not overlook a more extensive picture of regularity
as a property of the relation rather than as a property of the construction.
Therefore, we should now start to pursue for a wider understanding of the
archipelago of finite-state islands in Generative theories as well as in all
computational models of language.
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1.2. The search for further islands

Proving that the input-output relation defined by a grammar is regular is a
complicated task. The known finite-state islands and the closure properties
of finite-state transducers solve only the easy cases where the application
order of rules is fixed and the rules can be combined under a finite composi-
tion. But if the grammar contains iterative rules, we do not have a general
method that would return a non-iterative grammar. The regularity of the
string relation defined by iterative rules is computationally undecidable
already for context-free grammars (Stearns 1967; Greibach 1968), not to
talk about Turing machines and equivalent grammar systems.

In light of this, we see that the fundamental results in finite-state
Phonology (Johnson 1972; Kaplan & Kay 1994) have given us only islands,
sufficient conditions where the grammars or parts of grammars are finite-
state and generate regular relations. They do not exclude new conditions
that can also be valuable. New conditions are, ideally, constructive and
turn a formerly nonconstructive property into a method that gives a finite-
state transducer.

For example, it has been obvious since Chomsky & Halle (1968) that
a phonological grammar is regular when it contains only right-linear (or
left-linear) rules (Chomsky 1963). The left-linear rules have the general
shape α → βγ where α,β,γ are symbols and β does not match any left-
hand side in the grammar rules. The achievement of Johnson (1972) was
to expand the default regular subset of Generative Phonology by showing
that the linear and the simultaneous application of phonological rules with
context conditions can also generate a regular relation.

Kaplan and Kay (1994) also discuss general situations that are usually
known as cyclic derivations (Mohanan 1986). For example, the word unen-
forceable has the recursive structure [un[[en[force]]able]]. Here the phono-
logical rules are applied first to the innermost part, force. Then the in-
nermost brackets are removed and the application is repeated until no
brackets are left. Kaplan and Kay point out that “there may be restric-
tions on the mode of reapplication that limit the formal power of the
[cyclic] grammar…”. However, Kaplan and Kay (1994, 365) seem to think
that these restrictions are analogous to context-free grammars with only
right- or left-linear rules.

Besides context-free grammars with only right- or left-linear rules,
there are also self-embedding grammars that generate regular languages.
For example, the context-free grammar S → aS | Tb; T → Tb | c
generates the regular language a∗cb∗ and the context-sensitive grammar
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S → aS; aS → abT ; bT → cbT | c generates the regular language a∗c. In
these examples, the grammars look simple but are not immediately regular
on the basis of the shape of their rules.

In the sequel, section 2 presents a concrete example of a very simple
context-sensitive formalism whose conversion to a finite-state equivalent
grammar is tricky. In section 3, the reader is familiarized with a one-tape
Turing machine and Hennie’s sufficient condition for regularity. The paper
closes with remarks in section 4.

2. Safe unbounded composition

We will now give an example of a grammar whose regularity is not obvious
on the basis of the standard conditions.

2.1. hunspell

Our example of a non-classical finite-state grammar is the hunspell for-
malism (Németh et al. 2004) that represents a stage in the development of
spell checking algorithms. We only discuss its suffix rules and ignore many
details of the formalism.

The hunspell formalism is used to inflect and derive word forms
by a combination of continuation classes, truncation and appending. The
formalism resembles the Item and Process morphology (Hockett 1954) and
Lexical Phonology (Mohanan 1986). The formalism involves .dic and .aff
files that specify the initial word forms and the steps to produce other
word forms:

(1) .dic: glossy/T
.aff: SFX T y iest Cy

The word form glossiest is the combination of an input word glossy, having
the continuation class T, and a suffix rule (marked with SFX). The suffix
rule, for the continuation class T (T in the 2nd column), states that the
last vowel -y (y in the 3rd column) is replaced with -iest (iest in the 4th
column) if preceded by a consonant and the vowel -y (condition Cy in the
5th column).

When the hunspell dictionary formalism is interpreted as a rewriting
system, we see that the derivation glossyT ⇒ glossiest# is described
with a Generative Phonological rule (2):
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(2) Superlative Formation:
[y]T→ [i][e][s][t][#] / C

While the shape of such a rule is context-sensitive, it is not difficult to
see that this rule can be implemented with a non-deterministic finite-state
transducer. Furthermore, the suffix rules seem to be applied out from the
stem, at the right boundary of the string. However, such similarity with
right-linear grammars is only partial and does not imply that it would be
easy to compile the whole dictionary into a finite-state transducer. There
are two reasons:

– The rules do not only rewrite the continuation classes but they may
also back up and rewrite the phonological content produced earlier,
requiring, thus, two-way movements.

– The rules are non-monotonic: they can expand and shorten the input.
In order to analyse what actually happens, we need to construct a model
that shows how the dictionary form is processed by the affix rules.

2.2. Automaton models

Now we analyse hunspell by viewing the derivation steps of its word for-
mation as a process that corresponds to a computation by a particular TM.

The general definition of a Turing machine is assumed to be familiar
to the reader. In short, it is a combination of a finite-state automaton and
a rewritable two-way working tape that is initialized with the input string
of length n. The machine is allowed to append new letters arbitrarily to
the input string; thus the working tape is infinite. A TM can also have
auxiliary tapes, but we will restrict ourselves to one-tape TMs.

If we implement the derivation by the moves of a non-deterministic
one-tape TM, we obtain a machine that sweeps the working tape three
times in a row. During the first pass (3.1), the machine recognizes the stem
(glossy) and its continuation class (T), then rewinds the tape (3.2) to the
beginning of the string and non-deterministically replaces the substring
syT$$$ with the substring siest# during the final pass (3.3):

(3) $ # g l o s s y T $ $ $ $ · · ·
→ → → → → → → → → (3.1)

← ← ← ← ← ← ← ← ← (3.2)

→ → → → → → → → → → → → (3.3)

$ # g l o s s i e s t # $ · · ·
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Since regular relations are closed under composition, a finite number of
similar suffix rules could be applied in a row and the lexicon would still be
regular. In this way, k suffix positions of morphology could be treated. The
corresponding non-deterministic TM would rewind the tape k times to the
beginning. Thus, the total time complexity is in O(nk) when the string on
the tape occupies at most n tape squares. Thus, the non-deterministic TM
implementation of a finite composition has linear time complexity.

In a more general situation, one does not want to specify the maximum
number of suffixes explicitly. One reason can be that, in some languages,
the suffixes can be added recursively after one other. For example, a Turk-
ish word can, in principle, have an arbitrary number of suffixes although
only some of the combinations are interpretable. Another example involves
Old Georgian where the nouns can theoretically have unlimited number
of case-number markers (Michaelis & Kracht 1997). Finally, orthographic
compounding of many languages can involve several stems and alternat-
ing bound morphemes. For example, the Swedish word (with our mor-
pheme boundaries) Spår-vagn-s-aktie-bolag-s-sken-smut-s-skjut-are-fack-
förening-s-personal-beklädnad-s-magasin-s-förråd-s-förvaltar-en-s contains
14 stems and, in addition, several bound morphemes. Similar and much
longer examples can be found in other languages. E.g., a 431-letter word
appears in the Sanskrit literature. Thus, it is hard to argue that the num-
ber of rule applications has a finite upper bound in general.

The unbounded number of applications of suffix rules breaks the two
principles: non-self-embedding rules and finite composition. Moreover, the
implementation based on a rewinding TM would spend O(n2) time to
produce the derived string through the back and forth sweeps that simulate
the composition steps.

We can, however, improve the TM implementation by optimizing its
moves. Instead of rewinding the tape completely, the improved computa-
tion strategy (4) just backs up until it has tested the precondition. In our
example, the precondition is just the suffix [C][y][T]:

(4) → → → → → → → → (4.1)

$ # g l o s s y T $ $ $ $
← ← ← (4.2)

→ → → → → → (4.3)

s i e s t # $

With this change, long words are produced in a zigzag style (5) where
every rule application may back up some letters.
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(5) → →
←↩

↪→ →
←↩

↪→ →
. . .

←↩
↪→ →

Since the union of the affix-rules is applied repeatedly to its own output,
the standard two-part regularity condition of phonological grammars does
not apply. However, as long as the derivation deletes and appends new
material only at the right end of the string, the resulting process is linear
and, intuitively, a regular grammar. In addition, the moves taken by the
TM can now be deterministic because the machine does not completely
rewind the tape at any point but always makes relative moves that allow
it to remember its previous position.

2.3. Linear encoding

Although the grammar represented by a hunspell lexicon does not satisfy
the classical two-part condition of finite-state phonology, it is equivalent
to a finite-state transducer when restricted to the suffix rules.

There are now some methods to compile hunspell lexicons to finite-
state transducers. Early experiments on compilation are due to György
Gyepesi (p.c., 2007) and others in Budapest. The author developed his so-
lution (Yli-Jyrä 2009) using a variant of Two-Level Morphology (Kosken-
niemi 1983). This method viewed the lexicon as a collection of constraints
that described linearly encoded backing up and suffixation in derivations.
The method included an efficient one-shot compilation algorithm to com-
pile and intersect several hundreds of thousands of lexical context restric-
tion rules in parallel as if the lexical continuations (morphotaxis) were
phonological constraints. A similar method, finally implemented by his
colleagues, Pirinen and Linden (2010), separated the lexical continuations
from the phonological changes at morpheme boundaries and used a three-
step approach where the final step composed the lexicon with the phonol-
ogy. A separate compiler for lexical continuations was used and a two-level
grammar described the phonological realization of morphemes in different
contexts.
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The key to understanding the method of Yli-Jyrä (2009) is that the
computations of the TM are encoded as a linear string (6.2). This string
is produced if the derivation actually reaches the final continuation class
# whereas infinite loops do not correspond to an output string.

(6) gloss y (6.1)

<#><Root>glossδy<T>δ−1iest<#> (6.2)

gloss iest. (6.3)

Whenever the machine overwrites its own output, the overwritten part
(already on the left from the current position) is marked as deleted. The
deleted material is put between <D> and <-D>, two symbols abbreviated
now as δ and δ−1, respectively. The occurrence of these optional lexical
symbols is enforced in deleting contexts but banned otherwise, correspond-
ing to the surface realizations with and without contractions. For example,
the segment y in (6.2) is surrounded by a pair of δ and δ−1 because it is
cancelled by -iest, the next hunspell affix.

The derivation of the combination of glossy and -iest is encoded
as string (6.2). This internal string is then mapped to the output string
(6.3) by a transducer that deletes the markers and the material enclosed
between each pair of δ and δ−1. The computation can also be mapped to
the dictionary form (6.1) by removing the markers and the material that
belongs to the affixes.

An interesting part in the method is that the underlying derivation
encodes a computation of a bounded Turing machine (6.2). This string is
produced with context-restriction rules introduced in two-level phonology
(Koskenniemi 1983). Since the output deletions are taken care of by the
simple transducer between (6.2) and (6.3), it is sufficient to describe only
one representation level. The three rules in (7) describe where the root
(Root) of the lexicon is visited, where a continuation class T is reached, and
how the next (in fact final) continuation class is reached after a consonant,
a cancelled y and new material corresponding to lexical -iest.

(7) <Root> => <#> _ ; # the root symbol
<T> => <#>δ∗<Root>δ∗gδ∗lδ∗oδ∗sδ∗sδ∗yδ∗ _ ; # glossy/T
<#> => Cδy<T>δ−1δ∗iδ∗eδ∗sδ∗tδ∗<#>δ∗ _ ; # SFX T y iest Cy

The one-level representation of the underlying derivation works immedi-
ately in cases where the successive deletions are disjoint from each other.
It can also be extended to cases where the deleted parts are nested:
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(8)
abcef<A>︷ ︸︸ ︷

abcδeδf<A>

gh<B>︷ ︸︸ ︷
δ
−1gh<B>

hij<C>︷ ︸︸ ︷
δ
−1hij<C>︸ ︷︷ ︸

truncate f before gh<B>︸ ︷︷ ︸
truncate egh before hij<C>

The main functional difference between the methods described by Yli-Jyrä
(2009) and Pirinen & Lindén (2010) is in the way they treat non-disjoint
deletions. While the former method encodes the sequence of derivation
steps as one string, the latter encodes the lexical morpheme sequences
on one string and then the contracted sequences on the other level. The
latter method describes the contractions at morpheme boundaries via two-
level rules that constrain the way in which the underlying phonemes of a
morpheme are realized in the adjacency of various affixes. In this approach,
a contraction corresponds to zero realization.

(9)
abcef<A>︷ ︸︸ ︷

abc e f<A>
gh<B>︷ ︸︸ ︷
gh<B>

hij<C>︷ ︸︸ ︷
hij<C>

abc 0 0 0︸ ︷︷ ︸
truncate f before gh<B>

00 0

︸ ︷︷ ︸
truncate efgh before hij<C>

hij 0

Since the truncations in this representation (9) are specified in parallel
rather than one after another, the semantics of the variant (Pirinen &
Lindén 2010) deviates slightly from the original method (Yli-Jyrä 2009).

In particular, note that the addition of the suffix hij<C> in (8) and
(9) requires different suffixation rules as the truncations behave differently.
The rule applied in (9) must truncate more symbols. This semantic dif-
ference between the two methods can be compensated with an additional
pre-processing step that expands the set of suffixation rules. During this
step, a suffix rule that completely cancels the previous affix is replaced
with a suffix rule that is applied before the completely cancelled affix.
However, for most hunspell lexicons, the cancellation is restricted to the
most recent suffix, which means that the preprocessing step can be heuris-
tically ignored.
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3. The loosest sufficient condition

In the previous section, we related the hunspell derivations to one-tape
TMs. One reason to do so was that the regularity of one-tape TMs is an
old and carefully studied, well-understood problem.

In this section, we first relate one-tape Turing machines with trans-
ducers (§3.1–3.2). Then we study bounded one-tape TMs that implement
regular relations (§3.3). We will use the bounded one-tape TMs to give a
new proof for the two-part regularity condition (§3.4) and to find a more
general condition for a finite-state subset of Generative Phonology (§3.5).
Finally, we observe (§3.6) that even this condition does not cover all nat-
ural finite-state grammars.

3.1. One-tape TMs as transducers

Usually one-tape TMs and Hennie machines are viewed as language rec-
ognizers. Since it is not possible to construct a Hennie machine with two
readable tapes (Hennie 1965), the connection between Hennie machines
and one-way two-tape finite-state transducers is not obvious from the be-
ginning. In fact, most of the relevant literature discusses Hennie machines
as if they were equivalent to one-tape finite-state automata only.

As a notable exception, Engelfriet and Hoogeboom (2001) connect
Hennie machines to two-way two-tape finite-state machines. These ma-
chines are not allowed to read their output tape, but they are more pow-
erful than ordinary finite-state transducers.

Our way to view one-tape Turing machines as transducers requires
only the input tape with both reading and writing. As the machine modifies
the contents of the input tape during its computations, the input tape will
be occupied with an output string when the machine halts. Thus, every
one-tape TM recognizes three sets:

– the set of input strings that occur as the initial content of the working
tape in an accepting computation,

– the set of output strings that occur as the final content of the working
tape in an accepting computation,

– the relation consisting of the input-output string pairs where the first
string is the initial content and the second string is the final content
of the working tape in an accepting computation.
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Given the last definition, every one-tape TM can be viewed as a recognizer
of a binary relation.

3.2. Finite-state transducers as one-tape TMs

It is immediate that one-way finite-state transducers are equivalent to one-
tape Turing machines: one-way (non)deterministic finite-state transducers
are a special case of two-way (non)deterministic finite-state transducers,
and these are a special case of (non)deterministic two-tape Turing machines
that are equivalent to deterministic one-tape Turing machines.

If we restrict ourselves to finite-state transducers whose output pre-
serves the length of their input, we can view these transducers as one-tape
finite automata with a letter-pair alphabet (Kaplan & Kay 1994). This
gives an even more direct link from finite-state transducers to one-tape
Turing machines.

The restriction to these letter transducers is not a serious restriction if
we assume that the necessary 0’s are introduced non-deterministically to
the input string by an inverse homomorphic mapping h−1 : Σ∗ → (Σ∪{0})∗
that preserves the alphabet Σ. The 0’s are then removed from the output
string by the homomorphism h : (Σ∪ {0})∗ → Σ∗. In addition, we assume
that all states of the transducer have a self-loop on the letter pair (0, 0).

Let R1 and R2 be regular relations recognized by unrestricted finite-
state transducers, and let R′

1 and R′
2 be the corresponding same-length

relations recognized by the letter transducers with the self-loops. Now we
have the equation:

R1 ◦R2 = h−1 ◦R′
1 ◦R′

2 ◦ h.

It is now obvious that the same length relations R′
1, R′

2 and even R′
1 ◦R′

2

can be implemented as non-deterministic one-tape TMs that recognize the
relations in O(n) time by transforming the initial content of the tape to
the final content of the same tape.

3.3. TMs running in O(n) time

The most ground-breaking regularity condition for one-tape TMs is due to
Hennie. Hennie’s result is the converse to the fact that every one-way deter-
ministic finite automaton is a deterministic TM. The machines considered
by Hennie do not only include all one-way deterministic finite automata
and letter transducers but they also extend them in two particular ways:
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(1) the one-tape TMs can move back and forth on the tape, (2) they can
overwrite the contents of the squares of the tape several times.

Hennie (1965) showed that a deterministic one-tape TM is equivalent
to a finite automaton if it runs in O(n). The results of Hennie have been
extended, by Tadaki et al. (2010), to linear-time non-deterministic one-
tape TMs whose O(n) time bound holds for all accepting computations.
A deterministic and non-deterministic linear-time one-tape TM are called
a Hennie machine and a non-deterministic Hennie machine, respectively.
Both of these one-tape machines recognize a regular relation on the basis
of section 3.1.

Hennie analysed the expressive power of one-tape machines using
the concept of crossing sequence (aka schema) (Rabin 1963; Trakhten-
brot 1964; Hopcroft & Ullman 1979; Birget 1996) that is strongly related
to visiting sequences (Fischer 1969). This concept is a powerful tool in
the analysis of the behaviour of two-way automata and one-tape TMs. It
refers to the sequence of target states s1, s2, . . . visited by a TM when
its pointer crosses the boundary between a pair of adjacent tape squares.
States s1, s3, . . . are reached when the pointer moves forward and states
s2, s4, . . . are reached when the pointer moves backwards. Figure 1 shows
how states are visited during a computation and how a crossing sequence
is defined.

# W O R D I N G # # · · ·
q0 q1 q2 q3 q4

q7 q6 q5 ←↩
↪→ q8 q9 q10 q11 . . .

Figure 1: The crossing sequence between the 3rd and the 4th squares is
(s1, s2, s3) = (q3, q6, q9)

Every Hennie machine satisfies, by definition, the property that the length
of its crossing sequences is bounded by an integer (Hennie 1965). Since
the finiteness of crossing sequences implies that the TM is equivalent to a
finite-state automaton, this bound lets us construct an equivalent finite-
state device. The good news is that for all Hennie machines, a bounding
constant k is computable (Kobayashi 1985; Tadaki et al. 2010).

Průša (2014) showed that, if a deterministic Hennie machine recogniz-
ing the input language has m states and n working symbols, we can con-
struct a minimal deterministic finite automaton that has 22O(n logm) states.
Thus, Hennie machines recognizing the input are much more succinct than
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the equivalent minimal deterministic automaton. Obviously, a determin-
istic letter transducer constructed from a Hennie machine is not smaller
than the minimal automaton recognizing only the input language aka the
domain of the transducer.

3.4. Completeness with respect to prior art

Now we can prove that Hennie machines can be used, on the one hand,
to build a finite-state subset of Generative Phonology using the two-part
condition of non-self-application and finite composition, and, on the other,
to obtain compilation methods for such grammars that previously required
specialized encoding and a compilation algorithm.

Theorem 1. Composition of regular relations is a regular relation.

Proof. Let R1 and R2 be regular relations and R′
1 and R′

2 the respec-
tive same-length regular relations. Then there are, respectively, two non-
deterministic Hennie machines T1 and T2 that recognize R′

1 and R′
2. The

composition R′
1 ◦R′

2 is then computed by a Hennie machine that first runs
like T ′

1, then rewinds the tape and runs like T ′
2. Since the combined ma-

chine preserves the string length, it is equivalent to an epsilon-free finite-
state transducer that recognizes the relation R′

1 ◦ R′
2. The composition

h−1 ◦R′
1 ◦R′

2 ◦ h is then equivalent to the regular relation R1 ◦R2.

Theorem 2. The non-self-embedding application of rule of the form α→
β/λ_ρ corresponds to a regular relation.

Proof. Extend the original tape alphabet so that each square contains the
input letter and a Boolean vector indicating the validity of left and right
context conditions of the simultaneous rules. Let ML (MR) be a determin-
istic (co-deterministic) pattern matching automaton. The state computed
by this automaton indicates, for each string position, the type of the pre-
fix (suffix) of the position. Modify this pattern matching automaton by
adding self-loops on 0’s. Then transform the automaton into a finite-state
transducer M ′

L (M ′
R) in such a way that each transition adds the informa-

tion on the occurring left (right) contexts to the Boolean vectors of each
square. This epsilon-free transducer is a Hennie machine. The composition
M ′

L ◦M ′
R is then a Hennie machine that marks the occurring contexts at

all squares.
As a pre-processing step, make the length of each left-hand side α and

the respective right-hand side β identical by padding the shorter with 0’s.
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In addition, add synchronous 0’s freely to both. In this way we obtain a
letter transducer that recognizes a 0-padded representation of the regular
relation α× β.

Define a Hennie machine M1 that sweeps the string (containing 0’s)
from left to right and non-deterministically overwrites ranges of squares
that contain some left-hand-side string α with a corresponding right-hand-
side string β when the first and the last square in the input range indicate
the presence of the required left and right context, respectively. Define also
a Hennie machine M2 that removes the Boolean context vectors from the
tape squares. Now the composition M ′

L ◦M ′
R ◦M1 ◦M2 is recognized by a

Hennie machine M . Then h−1 ◦M ◦ h is equivalent to a non-deterministic
finite-state transducer that captures the semantics of the rule.

We have now used Hennie machines to show that simultaneous non-
overlapping rules are regular and that a finite composition of regular rules
preserves regularity. Other application modes of regular grammars are dis-
cussed in Johnson (1972); Kaplan & Kay (1994). The regularity of these
application modes can be proven similarly.

To conclude our argument, we show that Hennie machines actually
help us to compile hunspell dictionaries without special encodings.

Theorem 3. The iterated application of monotonic suffix rules of a
hunspell grammar makes a regular relation.

Proof. Every suffix rule corresponds to a Hennie machine that backs up
checking its context condition and then writes the non-truncated context
and the new suffix (4.2–4.3). The union of such Hennie machines is a non-
deterministic Hennie machine M . The closure M∗ is a TM that applies
suffix rules iteratively. As the suffix rules increase the length of the string
monotonically, the closureM∗ has a finite bound for the crossing sequences
and recognizes a regular relation.

3.5. The bound that cannot be improved

The Borodin-Trakhtenbrot Gap Theorem (Trakhtenbrot 1964) states that
expanded resources do not always expand the set of computable functions.
In other words, it is possible that the regularity of a TM holds even if
the O(n) is made slightly looser. A less tight time bound is now expressed
with the small-o notation: t(n) ∈ o(f(n))means that the upper bound f(n)
grows much faster than the running time t(n) when n tends to infinity:
limn→∞ t(n)/f(n) = 0.
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As an application of the Gap Theorem, Hartmanis (1968) and Trakh-
tenbrot (1964) showed independently that the time resource of finite-state
equivalent deterministic one-tape TMs can be extended from O(n) to
o(n logn). This bound is tight: regularity is algorithmically unsolvable for
any bound that exceeds n + 1 in Ω(n logn) (Gajser 2015). The extended
time bound has been generalized to non-deterministic one-tape TMs by
Tadaki et al. (2010). These extensions of Hennie’s core result give us a
new sufficient condition for the regularity of Generative Phonology.

Theorem 4. A generative phonological grammar is regular if its one-tape
TM implementation runs in o(n logn) time.

LetM be a one-tape TM implementation of a Generative phonological
grammar. The finiteness of the crossing sequences of a given TM is, in
general, undecidable (Průša 2014), but there is a reasonably good decision
procedure: to test if M is equivalent to a finite-state transducer, we can
pick a function t(n) that is in o(n logn) and test if M actually runs in
t(n). Interestingly, Gajser (2015) showed that for any reasonable function
t(n), we can decide whether a TM M runs in t(n). If a TM then runs
in t(n), it actually runs in O(n) (Pighizzini 2009). Thus, the new one-
sided condition for regularity of the phonological grammar has a sound
approximate solution.

3.6. The existence of non-Hennie finite-state grammars

If the suffix rules are non-monotonic and can shorten their inputs, the TM
can produce the same configuration again and again and produce arbi-
trarily long crossing sequences. The repetition may happen either a finite
or an infinite number of times. Interestingly, the specialized compilation
method (Yli-Jyrä 2009) handles both cases correctly, whereas we fail to
get a Hennie machine if the suffix rules are non-monotonic.

Non-monotonic suffix rules are an example of a situation where the
TM is equivalent to a Hennie machine that restricts the length of the
crossing sequences. The bad news is that we do not know when we have a
correct Hennie machine: it is difficult to find such bound k for the length
of crossing sequences that a given TM preserves its semantics when longer
crossing sequences are abandoned. Since a sufficient bound k is such that
the semantics of the restricted TM does not change although we allow
longer crossing-sequences, there are reasonable ways to probe possible val-
ues of k, but such probing is still heuristic.
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The difficulty of non-monotonic grammars indicates that although
we now have a more general condition for those Generative phonological
grammars that are equivalent to a finite-state transducer, a specialized
compilation algorithm may still encode infinite loops in a way that seems
to be beyond the Hennie condition.

4. Conclusions

It is historically interesting that Hennie’s regularity condition dates back
to the year 1965, that is, even before Chomsky & Halle (1968).

No decision procedure for the classical two-part condition (Johnson
1972; Kaplan & Kay 1994), is known. Compared to this situation, it is
remarkable that the new sufficient condition has several advantages:

– The new regularity condition has approximations that are decidable
(Gajser 2015).

– The equivalent finite-state transducer can be constructed from a Hen-
nie machine (Hennie 1965).

– The Hennie machines are extremely succinct compared to finite-state
machines (Průša 2014).

– Hennie machines seem to provide a more general framework for prov-
ing regularity of phonological grammars than the arguments based on
bimachine construction (Johnson 1972) or non-self-embedding gram-
mars (Kaplan & Kay 1994).

There are many interesting questions that could be studied in the future.
Here are some:
1. Despite the advantages of Hennie machines, the author is not aware

of any finite-state library that would be based on Hennie machines.
Would it be possible to develop a finite-state library that would use
Hennie machines to represent regular relations more compactly?

2. There does not seem to be much work that would link Hennie machines
and two-way finite-state transducers to minicomplexity, the computa-
tional complexity of two-way finite automata, that has recently ob-
tained attention in automata theory (Kapoutsis 2012). Could some of
the related results be extended to Hennie machines?

3. If a Hennie machine is used to implement a weighted rule system,
the machine must be constructed more carefully than what we have
done now: the 0-loops create new paths that make the computation
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of string weights tricky. Can we introduce weighted Hennie machines
and relate them to weighted automata?

4. We would like to understand why some natural finite-state gram-
mars, like nonmonotonic hunspell grammars, are finite-state, al-
though their crossing sequences seem to have no finite bound. Are
there thus other natural islands of regularity we should know about?

There are several potential applications for Hennie machines in Natural
Language Processing. We have already demonstrated that Hennie ma-
chines have applications in phonology and morphology (Yli-Jyrä 2009).
Weighted Hennie machines may be applied to OCR that is based on
weighted context-dependent correction rules (Drobac et al. 2017). Further-
more, non-monotonic Sequential Constraint Grammar is computationally
undecidable but has restrictions that have Hennie machine characteriza-
tions (Yli-Jyrä 2017). The search for Generative dependency grammars
that produce non-projective trees is an area that may also benefit from
the concepts of crossing sequences and Hennie machines (Nederhof & Yli-
Jyrä 2017).
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