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Normal distribution

Most statistical tests require a data set with unimodal distribution,
i.e. it has one single modus.

Tests for parametric data based on mean usually require data with
normal distribution.

I Continuous variables,

I mode is found in the middle of the distribution and is equal
with median and mean,

I the frequency of data decreases from the middle to both
directions symmetrically,

I an approximate bell-shape (Gaussian curve).

I it is asymptotic: approximates 0 but does not reach it.



Normal distribution (N)

It depends on n (number of elements), and on k (number of
classes or categories).
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Histogram and density curve for normally distributed data set with
100, 1000 and 10000 elements.
Mean = 10, standard deviation = 2.
The higher n, the closer the density to normal distribution.



Where does normal distribution occur?

Most types of data are normally distributed if sample is large
enough.

I IQ scores – but this is a deliberate definition.

I Heights and weights of human beings.

I Weights and lengths of fish caught in a large lake.

I Annual incomes of households.

I Grades on exams or in large classes.

I Climate (e.g. high and low temperatures over time).



Where does normal distribution not occur?

I Financial indicators and economic data.

I Price changes, interest rates, stock values, commodity prices,
exchange rates.

I Lifetimes of humans.

I Lifetimes of mechanical and electronic devices.

I Waiting times (queuing).

I Safety data (e.g. car crash data).



Parameters for N

We have to distingush between population and sample. We deal
with a sample but want to say something about the population.

Relevant measures:
µ: estimated mean of population.
σ: estimated standard deviation of population.
x̄ : mean of sample.

s: standard deviation of sample.

mean of sample:

x̄ = x1+x2+x3+···+xn
n =

n∑
i=1

xi

n



Variance

Dispersion measure for normally distributed parametric data.
Squared deviation from the mean: each value is subtracted from
the mean, and the difference is squared.

Why squared? We are not interested in the direction of the
deviation, i.e. whether the difference to the mean is negative or
positive. Squared values are necessarily positive.

variance =

n∑
i=1

(xi−x̄)2

n−1

Why does the denominator contain n− 1 instead of n? It expresses
that we deal with a sample and not the population, and that
sample s is only an approximation of population σ.



Standard deviation (SD or s)

The square root of variance: it can be interpreted as a measure of
the dispersion (width of distribution).

s =

√
n∑

i=1
(xi−x̄)2

n−1
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Left: variation (6, 14), right: standard deviation (8, 12).



Relevance of normal distribution for inferential statistics

Assumption: the means of n samples X̄ are normally distributed
around the mean of the population µ with a standard deviation σ.
Their distribution is N(µ, σ/

√
n)

where the standard deviation equals the standard error:

se = s√
n

The standard deviation expresses the distance of single data points
around the sample mean.
The standard error expresses the distance of sample means around
the hypothesised population mean.

Importance: mean and SD of a single sample allow for assumptions
about unknown values of population.



Difference between SD of sample and population

Let’s assume we are throwing 100 times with two dice and add
their values. What is the most frequent sum we will receive, and
what are the least frequent ones?

Since 7 is the sum of the most combinations (1+6, 2+5, 3+4,
4+3, 5+2, 1+6), this is expected to be the most frequent sum.
Both 2 and 12 are sums of one combination (1+1, 6+6), so these
are expected to be the least frequent sums.
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Distribution of sums and means

Left: density of 100 throws, right: density of 20 means of 100
throws.
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Sample mean = 7, mean of means = 6.98.
Sample SD = 2.25, SD of means = 0.23
Standard error based on sample: 2.25/

√
100 = 0.225

– a close approximation to SD of 20 means.



z transformation

SD is dependent on the number of elements and on mean ⇒ the
distribution of samples with different sizes and different means are
not comparable.

Solution: standardising to a z-score. For each value:

zi = xi−µ
σ

i.e. each value is subtracted from the population mean (= sample
mean) and divided by the standard deviation of the population.

Remember: SD of population has n in its denominator, whereas
sample SD has n − 1.



Standard normal distribution

Normal distribution is described as N(µ, σ).

mean: xi = µ = x̄

after z-transformation:

zi = µ−µ
σ = 0

standard deviation: σ = µ+ σ

zi = (µ+σ)−µ
σ = 1

description of standard normal distribution: N(0, 1)



Standard normal distribution

Density function:
x-axis: standard deviation, range: σ = −∞· · ·+∞.
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Density function

Characteristics:

I Area between x-axis and density function equals 1.

I 50% of all cases is located left of mean.

I Range between σ = −1 · · ·+ 1 includes 68.27% of all cases.

I Range between σ = −2 · · ·+ 2 includes 95.45% of all cases.

I Range between σ = −3 · · ·+ 3 includes 99.73% of all cases.



Standard normal distribution



Normality tests

Tests: Kolmogorov-Smirnov (in SPSS) or Wilk-Shapiro test (in R).
R-funkció: shapiro.test(vektor)
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If distribution is unimodal, but not symmetrical: transformation
methods such as

x = log(x), x = 1/x , x =
√
x etc. might result in a normal

distribution.



Probability



Probability in everyday life

Meaning: an estimation based on your general experience (how
often did a certain event happen in the given circumstances). E.g.
“It’s probably going to rain” (because it often does if the clouds
are grey).

Probability never means a confidental knowledge about the truth!
Sometimes it is not going to rain even if the clouds are grey.

So, everyday life does not tell us much about probability. . .



How probable is it that is is going to rain tomorrow?

70%: possibility that weather conditions are identical on adjacent
days.
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Probability in gambling

Do you receive heads or tails if you toss a coin?

Observations: 10 tosses, 20, 30. . .

The higher the number of tosses, the closer the number of heads
to 0.5.

Definition of empirical probability:

P = heads/all tosses

where number of tosses tends to infinity.

P’s value ranges between 0 (absolutely improbable) and 1
(absolutely certain).



Examples

I Throws with a die: given number/all possibilities = 1/6 =
0.17.

I Pulling an as from a set of Swiss cards: number of asses/all
cards = 4/32 = 0.124.

I The probability to throw two heads after each other:
head+head/all possible combinations = 1/4 = 0.25.

I The probability that a randomly chosen person is a female
with an academic background: proportion of academics in that
region 22.4%, proportion of females 50%: 0.224*0.5 = 0.112.



Confidence interval

Question: is it true that the mean of the random sample is within
the range of the sample means distributed around the population
mean?

Difficulty: µ is not known, only x̄ .
⇒ a decision with certainty is not possible, only with a probability
within a defined confidence interval.

Question: can we claim with a probability of 95% that the sample
mean x̄ is within the range of the sample means that are
distributed around µby the standard error?

The confidence level is set to p = 0.95.

Our goal: to define the critical values of a confidence interval
around the mean in positive and negative direction.



Critical values of the confidence interval

Our formula:
p(−1.96 ∗ se + µ < x̄ < µ+ 1.96 ∗ se) = 0.95

Problem: µ is still not known.

After simple mathematical transformations we arrive at

p(−1.96 ∗ se + x̄ < µ < x̄ + 1.96 ∗ se) = 0.95

Here µ is not necessary for the limit calculation any more.
Standard error and sample mean are known values.

But why 1.96? Remember: a standard deviation of 2 includes
95.45% of all cases. Here we only need 95%.



Alpha

Area outside of confidence interval: α = 1− p.

Remember that alpha has to be divided by 2 for the low and high
end of the distribution if H0 claims the equality of the two samples
(see below).



Testing the alternate hypothesis

Remember: we test our hypothesis by falsification, i.e. we test the
opposite hypothesis.

In empirical research, we usually hope to receive a mean outside of
1− p, i.e. within the range of α
⇒ the significance level is usually given by the value of α i.e. as
0.05 or 5%.

If we want to prove that a given sample does not belong into the
confidence interval p, i.e. to 95% of the probable means, then the
sample mean has to belong to the interval α/2 on either the lower
or the upper end.

This is bad news, because the probability that we can reject H0 is
in fact not 5%, but 2.5% in all two-sided tests where we assume
equality.



Testing the null hypothesis
I Assumption: sample a belongs to a different population than

sample b.
I Null hypothesis (H0): samples a and b belong to the same

population, i.e. their means are distributed around the same
population mean µ.

I Alternate hypothesis (H1): in can be claimed with p
probability that the mean of sample b belongs to a different
population than the mean of sample a.



Hypothesis testing with a confidence of p = 95%

1. H1: a differs from b-től with a high probability.
H0: a and b belong to the same population. Rejection: if x̄ is
within the range of α/2 at one of the edges of the density
function ⇒ two-tailed test (upper figure).

2. H1: a is larger than b with a high probability.
H0: a is not larger than b. Rejection: if x̄ is within the range
of α at the right edge of the density function ⇒ one-sided
test (lower figure).
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Error types

1. α error (Type I error): H0 is rejected because mean is
outside of the range of the conficende interval – it belongs
toα (red area).

2. β error (Type II error): H0 is not rejected, although the
mean belongs to a different population (yellow area).

H0 is not rejected H0 is rejected

H0 is true correct decision α error (false-positive)
H1 is true β error (false-negative) correct decision



Degrees of freedom

Number of elements that can be varied freely without changing a
certain relevant feature of the sample.

df = n − 1

Why? Let’s take a sample n = 5 with a mean x̄ = 10. How many
elements can be changed without effecting the mean?

Four, since 5th element has to be chosen so that sample mean still
remains 10.
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t-distribution and degrees of freedom

Flatness of t-distribution depends on degrees of freedom. The
larger df , the closer the critical value (limits of confidence interval)
to the mean.
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Again, the larger the sample size, the easier it is to reject the null
hypothesis.



Comparing samples based on t-distribution

If the standard deviation σ of the population is known, then the
z-distribution can be used. Else, Student’s t-distribution is used.
Same formula as for z , but contains s instead of σ.

zi = µ−µ
σ t = x̄−µ0

s/
√
n

t-distribution depends on sample size and is flatter than
z-distribution ⇒ limits of confidence interval are further away from
mean. The larger n, the closer t gets to z .
The larger the sample size, the better the approximation to the
population.



Student’s t-test

Remember that applying the t-distribution requires that data are

I metrical,

I symmetrical,

I normally distributed.

A t-test cannot be run on ordinal data, on asymmetrical and not
normally distributed data (unless they can be transformed to
normal distribution), and on bi- or multimodal data!

Unimodality has to be tested by creating a density function,
normality by the Kolgomorov-Smirnov or Shapiro-Wilk test.



One-sample Student’s t-test

I Requirement: normally distributed parametric variable.

I Application: if the mean of population or a large reference
sample is known. E.g. IQ that is distributed around µ 100 per
definition.

I Procedure: if t of the sample is larger than t that is defined
for the given confidence level with the given df ⇒ H0 is
rejected.

There are 60 children in the kindergarten Academic future. They
are said to be rather clever. Their mean IQ is 108, with a SD of
10. Are they more clever than average kids?



Example

Sample mean = 108, population mean = 100, SD = 10, number
of elements = 60.

t = x̄−µ0

s/
√
n

= 108−100
10/
√

60
= 8

1.29 = 6.2

t value that belongs to the defined confidence interval with 59
degrees of freedom = 1.67 (to be computed by a software or
looked up in a table).

tsample > t0.95(59) = 6.2 > 1.67⇒ H0 is rejected.

Conclusion: children in the kindergarten Academic future are
significantly more intelligent than the entire population.



Example

Sample mean = 108, population mean = 100, SD = 10, number
of elements = 60.

t = x̄−µ0

s/
√
n

= 108−100
10/
√

60
= 8

1.29 = 6.2

t value that belongs to the defined confidence interval with 59
degrees of freedom = 1.67 (to be computed by a software or
looked up in a table).

tsample > t0.95(59) = 6.2 > 1.67⇒ H0 is rejected.

Conclusion: children in the kindergarten Academic future are
significantly more intelligent than the entire population.



Two-sample independent t-test

I Based on two samples, two unknown population means µ are
compared.

I Reqiurements: normal distribution, homogeneity of sample
variances.

I Samples are independent (e.g. Chinese children and Croatian
pre-school children).

Here the population variance is estimated based on the sample
variances.

However, sample variances are seldom homogeneous. Either we
test the equality of sample variances, or we use the Welch-test.



Tests of homogeneity of variances

(At least) two samples:

I F -test: both samples are normally distributed, independent
samples.

I Levene-test: approximative test, but it can be used for data
without normal distribution and for more than two samples.

I Bartlett-test: normal distribution, also applicable to paired
samples.



Welch-test

Same as two-sample independent t-test, but the equality of
variances is not assumed.

The weight of new-born calves is given below. Is it true that male
calves weigh more than female calves?

male calves (kg) 46 37 39 37 33 48 35
female calves (kg) 27 37 35 41 35 34 43 38 40



Example: test of normality

Plotting densities will give a tentantive idea about normality:
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Test of normality based on Shapiro-Wilk-test: p = 0.2592 for
males, p = 0.6278 for females ⇒ both samples are normally
distributed. (A value less than 0.05 would indicate non-normal
distribution.)



Example: means and t-test

It is always useful to have a look at the boxplots first. If boxes
overlap, the samples are expected not to differ significantly.

●

male female

30
35

40
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F -test: 0.63 ⇒ equality of variances

Two-sample independent t-test with equal variances.
p = 0.3276⇒ H0 is not rejected.
What if we used Welch-test instead?
p = 0.3416→ if you want to skip performing the F -test, use
Welch-test wich is the default in R.



Two-sample paired t-test

If we have two kinds of observations on the same sample, the
observations are not independent, but paired.

Requirement: differences between two observations for the same
element are normally distributed. If n ≥ 30, normality assumption
can be ignored.

There is a data set with texts in English and Portuguese that have
been translated into the other language. Does the length of the
English translations of Portuguese texts significantly differ from
their original length?



Example: normality of differences
Since our sample size is only 8, the length differences for the
original Portuguese and English texts have to be tested for
normality.

Sample differences are normally distributed ⇒ paired t-test can be
applied.
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p = 0.0001309, thus English translations are significantly longer
than Portuguese originals.


